scholarly journals Long-Period Variables and Planetary Nebulae

1968 ◽  
Vol 34 ◽  
pp. 386-389
Author(s):  
Donald H. Menzel

The occasional appearance of a red giant or long-period variable in planetary nebulae poses a problem for theoretical astrophysics. Such a cool nuclear star would not ordinarily provide a source of ultraviolet radiation necessary for the excitation of the spectrum of a gaseous nebula.One possible solution of this problem postulates the existence of intense magnetic fields in the star. Second, the star itself has a structure resembling that of a miniature, highly compressed planetary, with a high-temperature nuclear star at the centre and a distended atmospheric shell enveloping chiefly the stellar equator.The magnetic field induces a sort of pumping action that creates the tire-shaped envelope from matter ejected near the poles. As this shell grows denser, it radiates like a stellar photosphere at low temperature. Eventually the shell becomes unstable and disperses outward to form and maintain the nebula. A quasi-periodic situation occurs, which explains the variation of light. Ultraviolet light absorbed during the minima, when the shell has vanished, adequately accounts for the nebular excitation. A wide variety of such symbiotic stars occurs, including repeating novae as well as the long-period variables.

1998 ◽  
Vol 185 ◽  
pp. 399-400
Author(s):  
D.R. Xiong ◽  
L. Deng ◽  
Q. L. Cheng

We have performed a linear pulsational stability survey of long period variable models. The dynamic and thermodynamic couplings between convection and oscillations are treated by using a statistical theory of nonlocal and time-dependent convection. The results show that the fundamental and all the low overtones are always pulsationally unstable for the low-temperature models when the coupling between convection and oscillations is ignored. When the coupling is considered, there is indeed a “Mira” pulsationally instability region outside of the Cepheid instability strip on the H-R diagram. The coolest models near the Hayashi track are pulsationally stable. Towards high temperature the fundamental mode first becomes unstable, and then the first overtone. Some of the 2nd −4th overtones may become unstable for the hotter models. All the modes higher than 4th (n > 4) are pulsationally stable. The position and the width of such an instability region on the H-R diagram critically depends on the mass, luminosity and metal abundance of the star.


2020 ◽  
Vol 92 (2) ◽  
pp. 20601
Author(s):  
Abdelaziz Labrag ◽  
Mustapha Bghour ◽  
Ahmed Abou El Hassan ◽  
Habiba El Hamidi ◽  
Ahmed Taoufik ◽  
...  

It is reported in this paper on the thermally assisted flux flow in epitaxial YBa2Cu3O7-δ deposited by Laser ablation method on the SrTiO3 substrate. The resistivity measurements ρ (T, B) of the sample under various values of the magnetic field up to 14T in directions B∥ab-plane and B∥c-axis with a dc weak transport current density were investigated in order to determine the activation energy and then understand the vortex dynamic phenomena and therefore deduce the vortex phase diagram of this material. The apparent activation energy U0 (B) calculated using an Arrhenius relation. The measured results of the resistivity were then adjusted to the modified thermally assisted flux flow model in order to account for the temperature-field dependence of the activation energy U (T, B). The obtained values from the thermally assisted activation energy, exhibit a behavior similar to the one showed with the Arrhenius model, albeit larger than the apparent activation energy with ∼1.5 order on magnitude for both cases of the magnetic field directions. The vortex glass model was also used to obtain the vortex-glass transition temperature from the linear fitting of [d ln ρ/dT ] −1 plots. In the course of this work thanks to the resistivity measurements the upper critical magnetic field Hc2 (T), the irreversibility line Hirr (T) and the crossover field HCrossOver (T) were located. These three parameters allowed us to establish a phase diagram of the studied material where limits of each vortex phase are sketched in order to optimize its applicability as a practical high temperature superconductor used for diverse purposes.


2016 ◽  
Vol 56 (8) ◽  
pp. 1052-1059 ◽  
Author(s):  
P. V. Strekalova ◽  
Yu. A. Nagovitsyn ◽  
A. Riehokainen ◽  
V. V. Smirnova

1982 ◽  
Vol 70 ◽  
pp. 275-282 ◽  
Author(s):  
Bronislaw Rudak

AbstractThe evolutionary relations between symbiotic stars and cataclysmic variables are presented. The symbiotic stars are assumed to be long period detached binaries containing a carbon-oxygen degenerate primary and a red giant losing its mass through a spherically symmetric wind. Such systems can be obtained in Case C evolution, provided a common envelope during a rapid mass transfer phase was not formed. The same way recurrent novae containing a red giant as a secondary component may be produced. The factors influencing the differences between symbiotic stars and nova-type stars are discussed.


Author(s):  
Dennis Whyte

The advantages of high magnetic fields in tokamaks are reviewed, and why they are important in leading to more compact tokamaks. A brief explanation is given of what limits the magnetic field in a tokamak, and why high temperature superconductors (HTSs) are a game changer, not just because of their higher magnetic fields but also for reasons of higher current density and higher operating temperatures. An accelerated pathway to fusion energy is described, defined by the SPARC and ARC tokamak designs. This article is part of a discussion meeting issue ‘Fusion energy using tokamaks: can development be accelerated?’.


1949 ◽  
Vol 2 (1) ◽  
pp. 48 ◽  
Author(s):  
FJ Lehany ◽  
DE Yabsley

Daily observations of solar radiation at frequencies of 1200 Mc/s., 600 Mc/s., and 200 Mc/s. taken between August 18 and November 30, 1947, are described. The characteristics of the radiation at 200 Mc/s. were in general agreement with those observed by earlier workers. At 600 Mc/s. and 1200 Mc/s., the received intensity was normally steady on any one day but underwent long-period variations over a range of about two to one. The radiation received when the sun was almost free of sunspots corresponded to an effective black-body temperature of 0.5 million �K. at 600 Mc/s. and 0.1 million �K. at 1200 Mc/s. As sunspots appeared, the temperature rose and showed marked oar- relation with sunspot area. It is considered that radiation at these frequencies is entirely thermal in origin and that the long-period variations are at least partly due to the influence of the magnetic field of sunspots on the mechanism of thermal emission from a magneto-ionic medium. On a few occasions, isolated disturbances were observed on 600 Mc/s. and 1200 Mc/s. some of which were associated with chromospheric flares and radio fade-outs. The difficulties arising in the calibration of the apparatus and the steps taken to overcome them are discussed in detail.


2018 ◽  
Vol 32 (31) ◽  
pp. 1850346
Author(s):  
Kh. R. Rostami

An oscillatory differential method of local diagnostics of superconductors is applied to the analysis of the trapped magnetic flux and the effective demagnetization factor in YBCO samples. Regular steps over certain intervals of the external field are observed on the magnetic-field dependence of these parameters. It is demonstrated that, as the external field increases, crystallites in a sample are decomposed into sub- and nanocrystallites with a size much less than the penetration depth [Formula: see text] of the magnetic field. The first critical thermodynamic magnetic fields of sub- and nanocrystallites are determined. These results allow one to reveal the interaction mechanism between magnetic and crystalline microstructures of superconductors and provide a deeper insight into the physical processes that occur in high-temperature superconductors (HTSCs) in a magnetic field.


Sign in / Sign up

Export Citation Format

Share Document