scholarly journals Low Mass Wolf-Rayet Stars: Theory

1982 ◽  
Vol 99 ◽  
pp. 413-422 ◽  
Author(s):  
Alvio Renzini

It is well known that the Wolf-Rayet phenomenon is not restricted to some bright and massive stars, presumably in their core hydrogen-burning or helium-burning phase, but that it is also encountered among the central stars of some planetary nebulae (PNe). The PN nuclei are generally regarded as the evolutionary product of low and intermediate mass stars (with initial masses M.1 below ∼5 M⊙), which have lost most of their hydrogen-rich envelope during the so-called Asymptotic Giant Branch (AGB) phase. Correspondingly, their present mass cannot exceed the Chandrasekhar limit (∼1.4 M⊙), and their internal structure consists of a highly degenerate carbon-oxygen core containing most of the stellar mass, surrounded by an intershell region of mass ΔMCSH, and by a very low-mass envelope (Me < ∼10−3 M⊙).

1989 ◽  
Vol 131 ◽  
pp. 463-472 ◽  
Author(s):  
Detlef Schönberner

Our understanding of the evolution of Central Stars of Planetary Nebulae (CPN) has made considerable progress during the last years. This was possible since consistent computations through the asymptotic giant branch (AGB), with thermal pulses and (in some cases) mass loss taken into account, became available (Schönberner, 1979, 1983; Kovetz and Harpaz, 1981; Harpaz and Kovetz, 1981; Iben, 1982, 1984; Wood and Faulkner, 1986). It turned out that the evolution depends very sensitively on the inital conditions on the AGB. More precisely, the evolution of an AGB remnant is a function of the phase of the thermal-pulse cycle during which this remnant was created on the tip of the AGB by the planetary-nebula (PN) formation process (Iben, 1984, 1987). This was first shown by Schönberner (1979), and then fully explored by Iben (1984). In short, two major modes of PAGB evolution to the white dwarf stage are possible, according to the two main phases of a thermally pulsing AGB star: the hydrogen-burning or helium-burning mode. If, for instance, the PN formation, i.e. the removal of the stellar envelope by mass loss, happens during a luminosity peak that follows a thermal pulse of the helium-burning shell, the remnant leaves the AGB while still burning helium as the main energy supplier (Härm and Schwarzschild, 1975). On the other hand, PN formation may also occur during the quiescent hydrogen-burning phase on the AGB, and the remnant continues then to burn mainly hydrogen on its way to becoming a white dwarf.


2016 ◽  
Vol 12 (S323) ◽  
pp. 179-183
Author(s):  
Marcelo M. Miller Bertolami

AbstractThe post-asymptotic giant branch (AGB) phase is arguably one of the least understood phases of the evolution of low- and intermediate- mass stars. The recent post-AGB evolutionary sequences computed by Miller Bertolami (2016) are at least three to ten times faster than those previously published by Vassiliadis & Wood (1994) and Blöcker (1995) which have been used in a large number of studies. This is true for the whole mass and metallicity range. The new models are also ~0.1–0.3 dex brighter than the previous models with similar remnant masses. In this short article we comment on the main reasons behind these differences, and discuss possible implications for other studies of post-AGB stars or planetary nebulae.


1989 ◽  
Vol 106 ◽  
pp. 176-195 ◽  
Author(s):  
R. Gallino

AbstractAfter a brief description of the developments of the theory of s-process nucleosynthesis, the difficulties recently encountered in envisaging reliable astrophysical conditions for obtaining a solar-system distribution of s-isotopes are discussed. In particular, while the reaction 22Ne(α, n)25Mg may account for the nucleosynthesis of the weak s-component in massive stars, it fails to reproduce the main s-component in intermediate mass stars. The efficiency of the alternative reaction 13C(α, n)160 occurring in low mass stars during recurring thermal instabilities of the He shell is then analyzed. It is shown that, contrary to previous expectations, the 13C source well reproduces the main component, provided that realistic physical conditions are assumed for the temporal behaviour of the pulse and the effect of the light n-absorbers (especially 12C) is properly taken into account. The results satisfactorily compare with the constraints of the classical s-analysis. Key observational evidences also appear to be in agreement with this scenario.


1989 ◽  
Vol 131 ◽  
pp. 505-522 ◽  
Author(s):  
Icko Iben ◽  
Alexander V. Tutukov

A non-negligible (∼ 15–20%) fraction of planetary nebulae is expected to be formed in close binaries in which one component fills its Roche lobe after the exhaustion of hydrogen or helium at its center. The nebula is ejected as a consequence of a frictional interaction between the stellar cores and a common envelope; the ionizing component of the central binary star may be a relatively high luminosity contracting star with a degenerate CO core, burning hydrogen or helium in a shell, or it may be a lower luminosity shell hydrogen-burning star with a degenerate helium core or a core helium-burning star. Even more exotic ionizing central stars are possible. Once the initial primary has become a white dwarf or neutron star, the secondary, after exhausting central hydrogen, will also fill its Roche lobe and eject a nebular shell in a common envelope event. The secondary becomes the ionizing star in a tight orbit with its compact companion. In all, there are roughly twenty different possibilities for the make-up of binary central stars, with the ionizing component being a post asymptotic giant branch star with a hydrogen- or helium-burning shell, a CO dwarf, a core helium-burning star, a shell helium-burning star with a degenerate CO core, a shell hydrogen-burning star with a degenerate helium core, or a helium degenerate dwarf, while its companion is a main sequence star, a CO degenerate dwarf, a helium star, a helium degenerate dwarf, or a neutron star. We estimate the occurrence frequency of several of these types and comment on the prior evolutionary history of 4 observed binary central stars.


2000 ◽  
Vol 24 (1) ◽  
pp. 201-218
Author(s):  
J.-P. Zahn ◽  
D. VandenBerg ◽  
R. Canal ◽  
C. Chiosi ◽  
W. Dziembowski ◽  
...  

Our Commission decided to proceed as before, with a rather comprehensive report, while focusing on the subjects where most progress has been achieved during the past three years. The colleagues who kindly contributed to it are W. Dziembowski (helio- and aster-oseismology), J. Guzik (intermediate-mass stars), G. Meynet (massive stars), G. Michaud (atomic diffusion), D. VandenBerg (low mass stars), G. Vauclair (white dwarfs), J.-P. Zahn (convection, rotational mixing).


2018 ◽  
Vol 14 (S343) ◽  
pp. 452-453
Author(s):  
Lisa Löbling ◽  
Henri Boffin

AbstractLow- and intermediate-mass stars experience a phase of carbon enrichment and slow neutron-capture nucleosynthesis (s-process) on the asymptotic giant branch. An interesting element is the radioactive technetium, whose presence is a clear indication that nucleosynthesis happened recently. Analysing the element abundances not only in the hot evolved stars at the center of planetary nebulae helps to derive constraints for the evolution of these stars. Doing so also in their companions if they are in a binary, provides information on the mass-transfer history.


1997 ◽  
Vol 23 (1) ◽  
pp. 293-302

This report focuses on a few subjects where substantial progress has been achieved during the past three years. Several colleagues were asked to describe what they consider as the highlights in their field, and we are very grateful to them for their prompt and competent response. They covered the following topics: massive stars (A. Maeder), intermediate mass stars (P. Demarque), low mass objects (G. Chabrier), stellar convection (H. Spruit), atomic diffusion (G. Michaud), rotational mixing (J.-P. Zahn), helioseismology (S. Basu) and solar neutrinos (E. Schatzman). J.-P. Zahn was responsible for collecting and editing their contributions.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 473-473
Author(s):  
Dorottya Szécsi ◽  
Jonathan Mackey ◽  
Norbert Langer

AbstractThe first stellar generation in galactic globular clusters contained massive low-metallicity stars (Charbonnel et al. 2014). We modelled the evolution of this massive stellar population and found that such stars with masses 100-600 M⊙ evolve into cool RSGs (Szécsi et al. 2015). These RSGs spend not only the core-He-burning phase but even the last few 105 years of the core-H-burning phase on the SG branch. Due to the presence of hot massive stars in the cluster at the same time, we show that the RSG wind is trapped into photoionization confined shells (Mackey et al. 2014). We simulated the shell formation around such RSGs and find them to become gravitationally unstable (Szécsi et al. 2016). We propose a scenario in which these shells are responsible for the formation of the second generation low-mass stars in globular clusters with anomalous surface abundances.


2004 ◽  
Vol 215 ◽  
pp. 579-588 ◽  
Author(s):  
Georges Meynet ◽  
Max Pettini

We use the rotating stellar models described in the paper by A. Maeder & G. Meynet in this volume to consider the effects of rotation on the evolution of the most massive stars into and during the Wolf–Rayet phase, and on the post-Main Sequence evolution of intermediate mass stars. The two main results of this discussion are the following. First, we show that rotating models are able to account for the observed properties of the Wolf–Rayet stellar populations at solar metallicity. Second, at low metallicities, the inclusion of stellar rotation in the calculation of chemical yields can lead to a longer time delay between the release of oxygen and nitrogen into the interstellar medium following an episode of star formation, since stars of lower masses (compared to non-rotating models) can synthesize primary N. Qualitatively, such an effect may be required to explain the relative abundances of N and O in extragalactic metal–poor environments, particularly at high redshifts.


2018 ◽  
Vol 14 (S343) ◽  
pp. 36-46
Author(s):  
Marcelo M. Miller Bertolami

AbstractThe transition from the asymptotic giant branch (AGB) to the final white dwarf (WD) stage is arguably the least understood phase in the evolution of single low- and intermediate-mass stars (0.8 ≲ MZAMS/M⊙ ≲ 8…10). Here we briefly review the progress in the last 50 years of the modeling of stars during the post-AGB phase. We show that although the main features, like the extreme mass dependency of post-AGB timescales were already present in the earliest post-AGB models, the quantitative values of the computed post-AGB timescales changed every time new physics was included in the modeling of post-AGB stars and their progenitors. Then we discuss the predictions and uncertainties of the latest available models regarding the evolutionary timescales of post-AGB stars.


Sign in / Sign up

Export Citation Format

Share Document