scholarly journals The effects of Rotation on Wolf–Rayet Stars and on the Production of Primary Nitrogen by Intermediate Mass Stars

2004 ◽  
Vol 215 ◽  
pp. 579-588 ◽  
Author(s):  
Georges Meynet ◽  
Max Pettini

We use the rotating stellar models described in the paper by A. Maeder & G. Meynet in this volume to consider the effects of rotation on the evolution of the most massive stars into and during the Wolf–Rayet phase, and on the post-Main Sequence evolution of intermediate mass stars. The two main results of this discussion are the following. First, we show that rotating models are able to account for the observed properties of the Wolf–Rayet stellar populations at solar metallicity. Second, at low metallicities, the inclusion of stellar rotation in the calculation of chemical yields can lead to a longer time delay between the release of oxygen and nitrogen into the interstellar medium following an episode of star formation, since stars of lower masses (compared to non-rotating models) can synthesize primary N. Qualitatively, such an effect may be required to explain the relative abundances of N and O in extragalactic metal–poor environments, particularly at high redshifts.

1989 ◽  
Vol 111 ◽  
pp. 63-82
Author(s):  
L.A. Willson

AbstractMass loss at rates sufficient to alter the evolution of stars is known to occur during the pre-main sequence evolution of most stars, on the main sequence for massive stars, and during advanced evolutionary phases when the luminosity is high and the effective temperature is low. While most investigations of the effects of mass loss on stellar evolution have assumed continuous (parametrized) mass loss laws apply, there is increasing evidence that mass loss rates are substantially higher for stars that are pulsating with large amplitude and/or in selected modes. Some new insights into the mass loss that terminates the AGB evolution of intermediate mass stars, and leads to the formation of planetary nebulae, come from recent detailed studies of the mass loss process from the Mira variables.


2019 ◽  
Vol 624 ◽  
pp. A137 ◽  
Author(s):  
L. Haemmerlé ◽  
P. Eggenberger ◽  
S. Ekström ◽  
C. Georgy ◽  
G. Meynet ◽  
...  

Grids of stellar models are useful tools to derive the properties of stellar clusters, in particular young clusters hosting massive stars, and to provide information on the star formation process in various mass ranges. Because of their short evolutionary timescale, massive stars end their life while their low-mass siblings are still on the pre-main sequence (pre-MS) phase. Thus the study of young clusters requires consistent consideration of all the phases of stellar evolution. But despite the large number of grids that are available in the literature, a grid accounting for the evolution from the pre-MS accretion phase to the post-MS phase in the whole stellar mass range is still lacking. We build a grid of stellar models at solar metallicity with masses from 0.8 M⊙ to 120 M⊙, including pre-MS phase with accretion. We use the GENEC code to run stellar models on this mass range. The accretion law is chosen to match the observations of pre-MS objects on the Hertzsprung-Russell diagram. We describe the evolutionary tracks and isochrones of our models. The grid is connected to previous MS and post-MS grids computed with the same numerical method and physical assumptions, which provides the widest grid in mass and age to date.


2020 ◽  
Vol 638 ◽  
pp. A55 ◽  
Author(s):  
Jakub Klencki ◽  
Gijs Nelemans ◽  
Alina G. Istrate ◽  
Onno Pols

Metallicity is known to significantly affect the radial expansion of a massive star: the lower the metallicity, the more compact the star, especially during its post-main sequence evolution. Our goal is to study this effect in the context of binary evolution. Using the stellar-evolution code MESA, we computed evolutionary tracks of massive stars at six different metallicities between 1.0 Z⊙ and 0.01 Z⊙. We explored variations of factors known to affect the radial expansion of massive stars (e.g., semiconvection, overshooting, or rotation). Using observational constraints, we find support for an evolution in which already at a metallicity Z ≈ 0.2 Z⊙ massive stars remain relatively compact (∼100 R⊙) during the Hertzprung-gap (HG) phase and most of their expansion occurs during core-helium burning (CHeB). Consequently, we show that metallicity has a strong influence on the type of mass transfer evolution in binary systems. At solar metallicity, a case-B mass transfer is initiated shortly after the end of the main sequence, and a giant donor is almost always a rapidly expanding HG star. However, at lower metallicity, the parameter space for mass transfer from a more evolved, slowly expanding CHeB star increases dramatically. This means that envelope stripping and formation of helium stars in low-metallicity environments occurs later in the evolution of the donor, implying a shorter duration of the Wolf-Rayet phase (even by an order of magnitude) and higher final core masses. This metallicity effect is independent of the effect of metallicity-dependent stellar winds. At metallicities Z ≤ 0.04 Z⊙, a significant fraction of massive stars in binaries with periods longer than 100 days engages in the first episode of mass transfer very late into their evolution, when they already have a well-developed CO core. The remaining lifetime (≲104 yr) is unlikely to be long enough to strip the entire H-rich envelope. Cases of unstable mass transfer leading to a merger would produce CO cores that spin fast at the moment of collapse. We find that the parameter space for mass transfer from massive donors (> 40 M⊙) with outer convective envelopes is extremely small or even nonexistent. We briefly discuss this finding in the context of the formation of binary black hole mergers.


2019 ◽  
Vol 82 ◽  
pp. 345-355 ◽  
Author(s):  
E. Alecian ◽  
F. Villebrun ◽  
J. Grunhut ◽  
G. Hussain ◽  
C. Neiner ◽  
...  

A small fraction of the population of intermediate-mass and massive stars host strong and stable magnetic fields organised on large scales. These fields are believed to be remnants of star formation. It is however not clear how such fossil fields have been shaped during their formation and subsequent evolution. We report recent and ongoing studies on the magnetic properties of pre-main sequence stars and main sequence binaries, allowing us to make progress in this field.


1999 ◽  
Vol 190 ◽  
pp. 275-276
Author(s):  
Arto Heikkilä ◽  
Lars E.B. Johansson ◽  
Hans Olofsson

The re-cycling of gas between stars and the interstellar medium (ISM) leads to a gradual metal-enrichment of a galaxy. Accordingly, information on the chemical evolution of a galaxy, e.g., its star-formation history (SFH), is contained in the chemical composition of the ISM. In this context, the abundance ratio of the rare oxygen isotopes, 18O/17O (usually taken as the C18O/C17O column density ratio), appears to be a particularly promising probe of the SFH. According to present understanding of stellar nucleosynthesis, 17O is mainly produced in intermediate-mass stars (say a few to ten M⊙) while 18O is synthesised in massive stars (say >10M⊙) (e.g., Prantzos et al. 1996). Thus, the 18O/17O abundance ratio possibly reflects the relative number of massive stars compared to intermediate-mass stars, and thereby (qualitatively) constrains the SFH in terms of the average star-formation rate (SFR) and the initial mass-function (IMF). However, it should be remembered that the stellar nucleosynthesis of 17,18O is not yet fully understood, leaving room for other interpretations of the 18O/17O ratio.


2018 ◽  
Vol 14 (S343) ◽  
pp. 468-469
Author(s):  
Luiz T. S. Mendes ◽  
Natália R. Landin ◽  
Paolo Ventura

AbstractAiming at investigating the roles of rotation and magnetic fields on AGB stars, the rotating version of the ATON stellar evolution code is being extended in order to account for intermediate--mass stars and their later evolutionary stages. Here we report some preliminary results on the effects of rotation and of a large-scale magnetic field on the structure and evolution of 3 and 5 M⊙ stellar models from the pre-main sequence up to the AGB.


1993 ◽  
Vol 418 ◽  
pp. 414 ◽  
Author(s):  
Francesco Palla ◽  
Steven W. Stahler

2009 ◽  
Vol 5 (H15) ◽  
pp. 815-815
Author(s):  
Antonio S. Hales ◽  
Michael J. Barlow ◽  
Janet E. Drew ◽  
Yvonne C. Unruh ◽  
Robert Greimel ◽  
...  

AbstractThe Isaac Newton Photometric H-Alpha Survey (IPHAS) provides (r′-Hα)-(r′-i′) colors, which can be used to select AV0-5 Main Sequence star candidates (age~20-200 Myr). By combining a sample of 23050 IPHAS-selected A-type stars with 2MASS, GLIMPSE and MIPSGAL photometry we searched for mid-infrared excesses attributable to dusty circumstellar disks. Positional cross-correlation yielded a sample of 2692 A-type stars, of which 0.6% were found to have 8-μm excesses above the expected photospheric values. The low fraction of main sequence stars with mid-IR excesses found in this work indicates that dust disks in the terrestrial planet zone of Main Sequence intermediate mass stars are rare. Dissipation mechanisms such as photo-evaporation, grain growth, collisional grinding or planet formation could possibly explain the depletion of dust detected in the inner regions of these disks.


Sign in / Sign up

Export Citation Format

Share Document