scholarly journals The LMC Globular Cluster Hodge 11 (=SL 868)

1984 ◽  
Vol 108 ◽  
pp. 43-44
Author(s):  
L. L. Stryker ◽  
J. M. Nemec ◽  
J. E. Hesser ◽  
R.D. McClure

The age of the star cluster H11 has been controversial for a number of years. The color-magnitude diagram (CMD) of Walker (1979) to V=21.5 was interpreted as an “…evolved main-sequence, whose termination point corresponds to an age of about 0.6 Gyr, but with a giant branch which is displaced blueward by about Δ (B-V)o=0.4 from the positions of the giant branches of open clusters of similar age in our Galaxy.” On the other hand, the integrated colors are similar to those of metal-poor globular clusters in the Galaxy (Freeman and Gascoigne 1977, and references therein), and “…incompatible with an age of say 0.3 Gyr.” Searle, Wilkinson and Bagnuolo (1980) classify it as Group VII, the oldest group. The system has no RR Lyrae stars (Graham and Nemec 1984).

2019 ◽  
Vol 490 (2) ◽  
pp. 1498-1508
Author(s):  
Nicolas Longeard ◽  
Nicolas Martin ◽  
Rodrigo A Ibata ◽  
Michelle L M Collins ◽  
Benjamin P M Laevens ◽  
...  

ABSTRACT We present a photometric and spectroscopic study of the Milky Way satellite Laevens 3. Using MegaCam/Canada–France–Hawaii Telescope $g$ and $i$ photometry and Keck II/DEIMOS multi-object spectroscopy, we refine the structural and stellar properties of the system. The Laevens 3 colour–magnitude diagram shows that it is quite metal-poor, old ($13.0 \pm 1.0$ Gyr), and at a distance of $61.4 \pm 1.0$ kpc, partly based on two RR Lyrae stars. The system is faint ($M_V = -2.8^{+0.2}_{-0.3}$ mag) and compact ($r_h = 11.4 \pm 1.0$ pc). From the spectroscopy, we constrain the systemic metallicity (${\rm [Fe/H]}_\mathrm{spectro} = -1.8 \pm 0.1$ dex) but the metallicity and velocity dispersions are both unresolved. Using Gaia DR2, we infer a mean proper motion of $(\mu _\alpha ^*,\mu _\delta)=(0.51 \pm 0.28,-0.83 \pm 0.27)$ mas yr−1, which, combined with the system’s radial velocity ($\langle v_r\rangle = -70.2 \pm 0.5 {\rm \, km \,\, s^{-1}}$), translates into a halo orbit with a pericenter and apocenter of $40.7 ^{+5.6}_{-14.7}$ and $85.6^{+17.2}_{-5.9}$ kpc, respectively. Overall, Laevens 3 shares the typical properties of the Milky Way’s outer halo globular clusters. Furthermore, we find that this system shows signs of mass segregation that strengthens our conclusion that Laevens 3 is a globular cluster.


1973 ◽  
Vol 21 ◽  
pp. 51-67 ◽  
Author(s):  
L. Rosino

RR Lyrae variables play a prominent role in many of the problems of globular clusters, and from several points of view. In the first place they can be considered as pretty good indicators of population and distance; although they do not form a completely homogeneous set of stars, the knowledge of their mean absolute magnitude gives a powerful means of establishing distances within and outside the Galaxy, and hence of determining the form and size of the Galaxy itself. Moreover, the number of RR Lyrae stars in clusters, the relative frequency of RRc and RRab, types, the length of the transition periods, the array of colors, when correctly interpreted, give important information on the degree of evolution, age and chemical composition of the clusters. Placed as they are in a peculiar region of the H — R diagram of Population II, the RR Lyr variables can be used as a good test of the theories of advanced evolution or the models of pulsating stars.


1973 ◽  
Vol 21 ◽  
pp. 187-195
Author(s):  
Pierre Demarque

Traditionally, cluster variables have been used as distance indicators and have in this sense played an important role in our understanding of stellar evolution. In particular, the determination of the distance moduli of globular clusters and of the absolute magnitude of the main sequence turnoff, thus yielding the ages of the cluster, have relied heavily in the past on observations of RR Lyrae stars.


2000 ◽  
Vol 176 ◽  
pp. 265-265
Author(s):  
E. Carretta ◽  
R. G. Gratton ◽  
G. Clementini

AbstractThe discrepancy between the long distance scale as derived, e.g., from Hipparcos-based distances to globular clusters via main sequence fitting to local subdwarfs, and the short distance scale as derived, e.g., from the absolute magnitude of field RR Lyrae stars via statistical parallaxes and the Baade–Wesselink method, could be accounted for if an intrinsic difference in luminosity of about 0.1−0.2 mag were found to exist between horizontal branch (HB) stars populating the sparse general field and the dense globular clusters.


1991 ◽  
Vol 148 ◽  
pp. 109-111
Author(s):  
C. David Laney

JHK observations have been obtained of Type II Cepheids in the LMC, in globular clusters, and in the galactic field. The P-L relations at J and H imply an LMC distance modulus consistent with Mv˜0.6 for RR Lyrae stars. Modest excesses at K are seen in some LMC objects. One previously reported LMC Type II Cepheid appears to be a Type I Cepheid, and two others are much redder in J-H than normal Type II Cepheids. HV11211 is a Type I Cepheid in the SMC.


1975 ◽  
Vol 67 ◽  
pp. 541-543
Author(s):  
A. V. Mironov ◽  
N. N. Samus'

The dependences of the numbers of variable stars in globular clusters on the chemical composition are studied. For given metallicity the numbers of RR Lyrae stars reduced to some definite total number of stars in the cluster are different for the two groups of globular clusters introduced by Mironov.


2012 ◽  
Vol 8 (S289) ◽  
pp. 101-108 ◽  
Author(s):  
Carla Cacciari

AbstractRR Lyrae variables are the primary standard candles for old stellar populations, and the traditional first step in the definition of the distance scale. Their properties are known on the basis of well-established physical concepts and their calibration is based on several empirical methods. Both aspects are critically reviewed, and their application as distance indicators within the Galaxy and the Local Group are discussed, also in view of the observing facilities that will be available in the near future.


2009 ◽  
Vol 5 (S266) ◽  
pp. 366-366
Author(s):  
Jura Borissova ◽  
Radostin Kurtev ◽  
Margaret M. Hanson ◽  
Leonid Georgiev ◽  
Valentin Ivanov ◽  
...  

AbstractWe are reporting some recent results from our long-term program aimed at characterizing the obscured present-day star cluster population in the Galaxy. Our goal is to expand the current census of the Milky Way's inner stellar disk to guide models seeking to understand the structure and recent star-formation history of our Galaxy. The immediate goal is to derive accurate cluster physical parameters using precise infrared photometry and spectroscopy. So far, we observed approximately 60 star cluster candidates selected from different infrared catalogs. Their nature, reddening, distance, age and mass are analyzed. Two of them, Mercer 3 and Mercer 5, are new obscured Milky Way globular clusters. Among the newly identified open clusters, the objects [DBS2003] 179, Mercer 23, Mercer 30, Mercer 70, and [DBS2003] 106 are particularly interesting because they contain massive young OB and Wolf–Rayet stars with strong emission lines.


1973 ◽  
Vol 21 ◽  
pp. 196-196
Author(s):  
T. S. Van Albada ◽  
Norman Baker

AbstractThe observational evidence leading to the classification, following Oosterhoff, of globular clusters containing RR Lyrae stars into two distinct groups, is summarized and discussed in the light of results of stellar evolution theory and pulsation theory. The dichotomy is caused, at least in part, by a dichotomy in the ‘transition period’ between the type-ab and type-c stars which reflects a difference in effective temperature at the transition point. When this difference is accounted for, there remains a smaller average difference between the groups, though no longer a clear dichotomy, that is probably a mass and luminosity effect. If this remaining difference is interpreted as a luminosity effect the average difference in luminosity between the two Oosterhoff groups is at most 0.1 mag. It is suggested that Christy’s theoretical relationship between transition period and luminosity cannot be valid, at least not for clusters of different Oosterhoff groups. It is conjectured that the transition-temperature dichotomy may be a reflection of different predominant directions of evolution along the horizontal branch, accompanied by a hysteresis effect in the pulsations.


Sign in / Sign up

Export Citation Format

Share Document