scholarly journals A New Survey of Globular Cluster Structural and Luminosity Parameters

1988 ◽  
Vol 126 ◽  
pp. 489-490
Author(s):  
B. Cameron Reed ◽  
Charles J. Peterson

We have made an analysis of the visual photometric data contained in the Catalogue of Concentric Aperture UBVRI Photoelectric Photometry of Globular Clusters (Peterson 1986). Structural parameters have been obtained by use of the Simplex algorithm of Caceci and Cacheris (1984) to fit the model curves of King (1966) to the run of cluster luminosity with radius. We find that concentric aperture photometry alone can be used to determine globular cluster core radii and central surface brigtnesses reliably. Application of this techique, however, is limited to about two-thirds of the known clusters of the Galaxy because no or inadequate numbers of photometric measurements exist for the remaining clusters. Accurate determination of cluster concentration classes still requires use of other types of data, such as star counts.

2019 ◽  
Vol 14 (S351) ◽  
pp. 68-71
Author(s):  
Michele Cantiello ◽  
A. Venhola ◽  
M. Paolillo ◽  
R. D’Abrusco ◽  
A. Grado ◽  
...  

AbstractThe Fornax Deep Survey (FDS) is a multi-band imaging survey of the Fornax cluster of galaxies, executed with the ESO VLT Survey Telescope (VST). The survey is designed to reach unprecedented surface brightness and point-source magnitude depth over one virial radius of the cluster. The scientific objectives of the survey are numerous: the study of the galaxy luminosity function, derivation of galaxy scaling relations, determination of the properties of compact stellar systems, an accurate determination of distances and 3-D geometry of the Fornax cluster, analysis of diffuse stellar light and galaxy interactions, etc.In this contribute we give an overview on the interest of the survey on globular clusters (GC) populations, and present a report the status of the study of GCs also providing some preliminary results of our analysis, with particular regard to the two-dimensional distribution of GC candidates over ∼20 sq. degree area of Fornax centered on NGC 1399.


1980 ◽  
Vol 5 ◽  
pp. 817-826
Author(s):  
B. E. J. Pagel

SummaryThis review concerns recent work on the determination of overall metallicities [Fe/H] in a number of globular clusters and the systematics of mixing effects displayed (usually) by weak CH and strong CN. Special attention is given to the globular cluster ω Centauri, where both metal abundance variations and mixing effects occur and are closely intertwined. Recent observations carried out at the Anglo-Australian Telescope by E.A. Mallia and D.C. Watts have revealed large variations in the strength of metallic lines across the red giant branch of this cluster.


2017 ◽  
Vol 26 (09) ◽  
pp. 1730017
Author(s):  
Marco Merafina

We analyze structural parameters of the globular clusters belonging to the Milky Way system which were listed in the latest edition of the Harris Catalogue. We search for observational evidences of the effect of tidal forces induced by the Galaxy on the dynamical and thermodynamical evolution of a globular cluster. The behavior for the [Formula: see text] distribution exhibited by the globular cluster population seems to be in contrast with theoretical results in literature about gravothermal instability, and suggest a new limit value smaller than the previous one.


1996 ◽  
Vol 174 ◽  
pp. 401-402
Author(s):  
E. Vesperini

Recent surveys of the observational properties of galactic globular clusters have shown the existence of interesting correlations and trends between structural parameters and between structural parameters and location inside the Galaxy (Chernoff & Djorgovski 1989, Djorgovski & Meylan 1994). The origin of most of these correlations is not clear yet and it is not clear to what extent they reflect the primordial conditions or the result of evolution. We have carried out a set of simulations following the evolution of the properties of a globular cluster system (mass function, spatial distribution, correlations between structural parameters) starting from given initial conditions. The evolution of each individual cluster has been followed by the same method applied by Chernoff et al. (1986) and Chernoff & Shapiro (1987). The effects of internal relaxation, disk shocking and dynamical friction have been considered. The main goal of the analysis is that of establishing the role of initial conditions and evolutionary processes in determining the present observational properties.


1967 ◽  
Vol 31 ◽  
pp. 323-329 ◽  
Author(s):  
Bengt Strömgren

Narrow-band photoelectric photometry can furnish classification indices allowing accurate determination of stellar ages. From these ages, together with well-determined space motions, the places of formation of stars, and their relationship to the spiral structure of the Galaxy, may be determined. This procedure has been successfully followed for 52 B8–B9 stars within 200 pc from the Sun. It turns out that seven of these have originated in the Perseus Arm, with local peculiar velocities of about 22 km/sec.A simple model is developed describing places of star formation in the Perseus Arm and velocities at formation. The distribution of space velocities and of ages for stars formed according to this model appears to be in agreement with observation.


1966 ◽  
Vol 25 ◽  
pp. 93-97
Author(s):  
Richard Woolley

It is now possible to determine proper motions of high-velocity objects in such a way as to obtain with some accuracy the velocity vector relevant to the Sun. If a potential field of the Galaxy is assumed, one can compute an actual orbit. A determination of the velocity of the globular clusterωCentauri has recently been completed at Greenwich, and it is found that the orbit is strongly retrograde in the Galaxy. Similar calculations may be made, though with less certainty, in the case of RR Lyrae variable stars.


1998 ◽  
Vol 11 (1) ◽  
pp. 581-582
Author(s):  
L. Lindegren ◽  
M.A.C. Perryman

The Hipparcos mission demonstrated the efficiency of space astrometry (in terms of number of objects, accuracy, and uniformity of results) and the fact that a relatively small instrument can have a very large scientific potential in the area of astrometry. However, Hipparcos could probe less than 0.1 per cent of the volume of the Galaxy by direct distance measurements. Using a larger instrument and more efficient detectors, it is now technically feasible to increase the efficiency of a space astrometry mission by several orders of magnitude, thus encompassing a large part of the Galaxy within its horizon for accurate determination of parallaxes and transverse velocities. Such a mission will have immediate and profound impact in the areas of the physics and evolution of individual stars and of the Galaxy as a whole.


1994 ◽  
Vol 161 ◽  
pp. 453-459 ◽  
Author(s):  
M. Odenkirchen ◽  
R.-D. Scholz ◽  
M.J. Irwin

We present results from orbit integrations for the globular clusters M 3 and M 92. Absolute proper motions recently measured from Tautenburg Schmidt plates and a three-component mass model for the Galaxy have been used to derive the galactic orbits of these clusters. Orbital parameters and the influence of observational uncertainties on the determination of the orbits are discussed.


1988 ◽  
Vol 126 ◽  
pp. 37-48
Author(s):  
Robert Zinn

Harlow Shapley (1918) used the positions of globular clusters in space to determine the dimensions of our Galaxy. His conclusion that the Sun does not lie near the center of the Galaxy is widely recognized as one of the most important astronomical discoveries of this century. Nearly as important, but much less publicized, was his realization that, unlike stars, open clusters, HII regions and planetary nebulae, globular clusters are not concentrated near the plane of the Milky Way. His data showed that the globular clusters are distributed over very large distances from the galactic plane and the galactic center. Ever since this discovery that the Galaxy has a vast halo containing globular clusters, it has been clear that these clusters are key objects for probing the evolution of the Galaxy. Later work, which showed that globular clusters are very old and, on average, very metal poor, underscored their importance. In the spirit of this research, which started with Shapley's, this review discusses the characteristics of the globular cluster system that have the most bearing on the evolution of the Galaxy.


1983 ◽  
Vol 100 ◽  
pp. 359-364
Author(s):  
K. C. Freeman

In the Milky Way, the globular clusters are all very old, and we are accustomed to think of them as the oldest objects in the Galaxy. The clusters cover a wide range of chemical abundance, from near solar down to about [Fe/H] ⋍ −2.3. However there are field stars with abundances significantly lower than −2.3 (eg Bond, 1980); this implies that the clusters formed during the active phase of chemical enrichment, with cluster formation beginning at a time when the enrichment processes were already well under way.


Sign in / Sign up

Export Citation Format

Share Document