scholarly journals The Secular Resonances in the Solar System

1994 ◽  
Vol 160 ◽  
pp. 189-204
Author(s):  
Christiane Froeschle ◽  
Alessandro Morbidelli

In the last three years new studies on secular resonances have been done. The second–order and fourth–degree secular perturbation theory of Milani and Knežević allowed to point out the effect of mean motion resonances on the location of the linear and non linear secular resonances. Moreover this theory improved the knowledge of the exact location of the g = g6 (i.e. ν6) resonance at low inclination. Morbidelli and Henrard revisited the semi–numerical method of Williams, taking into account the quadratic terms in the perturbing masses. They computed not only the location of secular resonances, but also provided a global description of the resonant dynamics in the main secular resonances namely g = g5 (i.e. ν5), g = g6 (i.e. ν6) and s = s6 (i.e. ν16). The resonant proper element algorithm developed by Morbidelli allows to identify the dynamical nature of resonant objects, and is a powerful tool to study the mechanisms of meteorite transport to the inner Solar System. Purely numerical experiments have been done, which show: (i) the complexity of the dynamics when two resonances overlap; (ii) the efficiency of successive crossings of non linear resonances in pumping up the inclination of small bodies; (iii) the efficiency of the secular resonance ν6 as a source of meteorites up to 2.4 AU.

2006 ◽  
Vol 2 (S236) ◽  
pp. 77-84
Author(s):  
Jianghui Ji ◽  
L. Liu ◽  
G. Y. Li

AbstractWe investigate the secular resonances for massless small bodies and Earth-like planets in several planetary systems. We further compare the results with those of Solar System. For example, in the GJ 876 planetary system, we show that the secular resonances ν1 and ν2 (respectively, resulting from the inner and outer giant planets) can excite the eccentricities of the Earth-like planets with orbits 0.21≤ a <0.50 AU and eject them out of the system in a short timescale. However, in a dynamical sense, the potential zones for the existence of Earth-like planets are in the area 0.50≤ a ≤1.00 AU, and there exist all stable orbits last up to 105 yr with low eccentricities. For other systems, e.g., 47 UMa, we also show that the Habitable Zones for Earth-like planets are related to both secular resonances and mean motion resonances in the systems.


2019 ◽  
Vol 630 ◽  
pp. A60 ◽  
Author(s):  
Miao Li ◽  
Yukun Huang ◽  
Shengping Gong

Aims. Asteroids in mean motion resonances (MMRs) with planets are common in the solar system. In recent years, increasingly more retrograde asteroids are discovered, several of which are identified to be in resonances with planets. We here systematically present the retrograde resonant configurations where all the asteroids are trapped with any of the eight planets and evaluate their resonant condition. We also discuss a possible production mechanism of retrograde centaurs and dynamical lifetimes of all the retrograde asteroids. Methods. We numerically integrated a swarm of clones (ten clones for each object) of all the retrograde asteroids (condition code U < 7) from −10 000 to 100 000 yr, using the MERCURY package in the model of solar system. We considered all of the p/−q resonances with eight planets where the positive integers p and q were both smaller than 16. In total, 143 retrograde resonant configurations were taken into consideration. The integration time was further extended to analyze their dynamical lifetimes and evolutions. Results. We present all the meaningful retrograde resonant configurations where p and q are both smaller than 16 are presented. Thirty-eight asteroids are found to be trapped in 50 retrograde mean motion resonances (RMMRs) with planets. Our results confirm that RMMRs with giant planets are common in retrograde asteroids. Of these, 15 asteroids are currently in retrograde resonances with planets, and 30 asteroids will be captured in 35 retrograde resonant configurations. Some particular resonant configurations such as polar resonances and co-orbital resonances are also identified. For example, Centaur 2005 TJ50 may be the first potential candidate to be currently in polar retrograde co-orbital resonance with Saturn. Moreover, 2016 FH13 is likely the first identified asteroid that will be captured in polar retrograde resonance with Uranus. Our results provide many candidates for the research of retrograde resonant dynamics and resonance capture. Dynamical lifetimes of retrograde asteroids are investigated by long-term integrations, and only ten objects survived longer than 10 Myr. We confirmed that the near-polar trans-Neptunian objects 2011 KT19 and 2008 KV42 have the longest dynamical lifetimes of the discovered retrograde asteroids. In our long-term simulations, the orbits of 12 centaurs can flip from retrograde to prograde state and back again. This flipping mechanism might be a possible explanation of the origins of retrograde centaurs. Generally, our results are also helpful for understanding the dynamical evolutions of small bodies in the solar system.


2021 ◽  
pp. 4-4
Author(s):  
Z. Knezevic

Using a recently introduced synthetic method to compute the asteroid secular frequencies (Knezevic and Milani 2019), in this paper we survey the locations of secular resonances in the 9 dynamically distinct zones of the asteroid belt. Positions of all resonances up to order four, of a significant fraction of the order six resonances, and of a several order eight ones were determined, plotted in the space of proper elements, and discussed in relation to the local dynamics and to the structure and shape of the nearby asteroid collisional families. Only the resonant combinations with fundamental frequencies of Jupiter and Saturn were considered, with a few special cases involving other planets and largest asteroids. Accuracy of the polynomial fit to determine the frequencies was found to be satisfactory for the purpose of determination of secular resonance positions. This enabled a precise identification of dynamical mechanisms affecting the computation of frequencies (close vicinity of the mean motion resonances and libration in secular resonances), and of the \cycle slips" as a primary technical drawback causing deterioration of the results. For each zone we also presented and discussed a fairly complete sample of recent works dealing with interaction of the secular resonances with asteroid families present in that zone. Finally, a few words were devoted to possibilities for future work.


Life ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Walaa Elmasry ◽  
Yoko Kebukawa ◽  
Kensei Kobayashi

The extraterrestrial delivery of organics to primitive Earth has been supported by many laboratory and space experiments. Minerals played an important role in the evolution of meteoritic organic matter. In this study, we simulated aqueous alteration in small bodies by using a solution mixture of H2CO and NH3 in the presence of water at 150 °C under different heating durations, which produced amino acids after acid hydrolysis. Moreover, minerals were added to the previous mixture to examine their catalyzing/inhibiting impact on amino acid formation. Without minerals, glycine was the dominant amino acid obtained at 1 d of the heating experiment, while alanine and β-alanine increased significantly and became dominant after 3 to 7 d. Minerals enhanced the yield of amino acids at short heating duration (1 d); however, they induced their decomposition at longer heating duration (7 d). Additionally, montmorillonite enhanced amino acid production at 1 d, while olivine and serpentine enhanced production at 3 d. Molecular weight distribution in the whole of the products obtained by gel chromatography showed that minerals enhanced both decomposition and combination of molecules. Our results indicate that minerals affected the formation of amino acids in aqueous environments in small Solar System bodies and that the amino acids could have different response behaviors according to different minerals.


1993 ◽  
Vol 10 (4) ◽  
pp. 283-286 ◽  
Author(s):  
Andrew Melatos ◽  
Peter Robinson

AbstractClumpy, intense wave packets observed in situ in the Jovian and terrestrial electron foreshocks, and in the Earth’s auroral acceleration zone, point to the existence of non-linear plasma turbulence in these regions. In non-linear turbulence, wave packets collapse to short scales and high fields, stopping only when coherent wave-particle interactions efficiently dissipate the energy in the waves. The purpose of this paper is to examine the shortest scales and highest fields achieved during collapse in a strongly magnetised plasma, and identify parts of the solar system where the magnetised aspects of wave collapse are important.


2018 ◽  
pp. 395-419 ◽  
Author(s):  
Julia de León ◽  
Javier Licandro ◽  
Noemí Pinilla-Alonso

1994 ◽  
Vol 160 ◽  
pp. 143-158 ◽  
Author(s):  
Zoran Knežević ◽  
Andrea Milani

Four perturbation theories presently used to compute asteroid proper elements are reviewed, and their results are briefly discussed (Milani and Knežević, 1990, 1992, 1994, for low to moderate eccentricity/inclination main belt objects; Lemaitre and Morbidelli, 1994, for high e, I objects; Milani, 1993, for Trojans; Schubart, 1982, 1991 for Hildas). The most important recent improvements are described, in particular those pertaining to the upgrades of the previous analytic and semianalytic solutions. The dynamical structure of the asteroid main belt, as defined by the low order mean motion resonances and by linear and nonlinear secular resonances, is considered from the point of view of the effects of these resonances on the accuracy and/or reliability of the computation of proper elements and on the reliability of the identification of asteroid families.


Sign in / Sign up

Export Citation Format

Share Document