scholarly journals Large-Scale Magnetic Field Structure at the Earth's Orbit, Its Correlation with Solar Activity and Orientation and Motion of the Solar System in the Galaxy

1980 ◽  
Vol 91 ◽  
pp. 167-172
Author(s):  
G. J. Vassilyeva ◽  
M. A. Kuznetsova ◽  
L. M. Kotlyar

Interplanetary magnetic field data from the different satellites obtained during the period 1963-1973 at 1 A.U. and compiled by J. King have been analysed in heliocentric ecliptic coordinates. The peculiarities of the background interplanetary magnetic field (BIMF) are discussed in relation to the orientation of the solar system in the Galaxy and the variable helioefficiency of the planets. The results of the direct cosmic experiments are evidence of the solar activity being a complex phenomenon of the solar system as a whole.

1980 ◽  
Vol 91 ◽  
pp. 323-326
Author(s):  
D. J. Mullan ◽  
R. S. Steinolfson

The acceleration of solar cosmic rays in association with certain solar flares is known to be highly correlated with the propagation of an MHD shock through the solar corona (Svestka, 1976). The spatial structure of the sources of solar cosmic rays will be determined by those regions of the corona which are accessible to the flare-induced shock. The regions to which the flare shock is permitted to propagate are determined by the large scale magnetic field structure in the corona. McIntosh (1972, 1979) has demonstrated that quiescent filaments form a single continuous feature (a “baseball stitch”) around the surface of the sun. It is known that helmet streamers overlie quiescent filaments (Pneuman, 1975), and these helmet streamers contain large magnetic neutral sheets which are oriented essentially radially. Hence the magnetic field structure in the low solar corona is characterized by a large-scale radial neutral sheet which weaves around the entire sun following the “baseball stitch”. There is therefore a high probability that as a shock propagates away from a flare, it will eventually encounter this large neutral sheet.


1998 ◽  
Vol 167 ◽  
pp. 493-496
Author(s):  
Dmitri I. Ponyavin

AbstractA technique is used to restore the magnetic field of the Sun viewed as star from the filament distribution seen on Hα photographs. For this purpose synoptic charts of the large-scale magnetic field reconstructed by the McIntosh method have been compared with the Sun-asstar solar magnetic field observed at Stanford. We have established a close association between the Sun-as-star magnetic field and the mean magnetic field inferred from synoptic magnetic field maps. A filtering technique was applied to find correlations between the Sun-as-star and large-scale magnetic field distributions during the course of a solar cycle. The correlations found were then used to restore the Sun-as-star magnetic field and its evolution in the late 1950s and 1960s, when such measurements of the field were not being made. A stackplot display of the inferred data reveals large-scale magnetic field organization and evolution. Patterns of the Sun-as-star magnetic field during solar cycle 19 were obtained. The proposed technique can be useful for studying the solar magnetic field structure and evolution during times with no direct observations.


1976 ◽  
Vol 71 ◽  
pp. 113-118
Author(s):  
P. Ambrož

The measurement of the magnitude of the limb effect was homogenized in time and a recurrent period of maxima of 27.8 days was found. A relation was found between the maximum values of the limb effect of the redshift, the boundaries of polarities of the interplanetary magnetic field, the characteristic large-scale distribution of the background magnetic fields and the complex of solar activity.


2010 ◽  
Vol 6 (S271) ◽  
pp. 407-408
Author(s):  
Jörn Warnecke ◽  
Axel Brandenburg

Abstractwe investigate the emergence of a large-scale magnetic field. This field is dynamo-generated by turbulence driven with a helical forcing function. Twisted arcade-like field structures are found to emerge in the exterior above the turbulence zone. Time series of the magnetic field structure show recurrent plasmoid ejections.


2008 ◽  
Vol 4 (S259) ◽  
pp. 509-514 ◽  
Author(s):  
Volker Heesen ◽  
M. Krause ◽  
R. Beck ◽  
R.-J. Dettmar

AbstractWe present radio continuum polarimetry observations of the nearby edge-on galaxy NGC 253 which possesses a very bright radio halo. Using the vertical synchrotron emission profiles and the lifetimes of cosmic-ray electrons, we determined the cosmic-ray bulk speed as 300±30 km s−1, indicating the presence of a galactic wind in this galaxy. The large-scale magnetic field was decomposed into a toroidal axisymmetric component in the disk and a poloidal component in the halo. The poloidal component shows a prominent X-shaped magnetic field structure centered on the nucleus, similar to the magnetic field observed in other edge-on galaxies. Faraday rotation measures indicate that the poloidal field has an odd parity (antisymmetric). NGC 253 offers the possibility to compare the magnetic field structure with models of galactic dynamos and/or galactic wind flows.


2021 ◽  
Author(s):  
James Henry Lane ◽  
Adrian Grocott ◽  
Nathan Anthony Case ◽  
Maria-Theresia Walach

Abstract. Previous observations have provided a clear indication that the dusk-dawn (v⊥y) sense of both slow (< 200 km s−1) and fast (> 200 km s−1) convective magnetotail flows is strongly governed by the Interplanetary Magnetic Field (IMF) By conditions. The related “untwisting hypothesis” of magnetotail dynamics is commonly invoked to explain this dependence, in terms of a large-scale magnetospheric asymmetry. In the current study, we present Cluster spacecraft observations from 12 October 2006 of earthward convective magnetotail plasma flows whose dusk-dawn sense disagrees with the untwisting hypothesis of IMF By control of the magnetotail flows. During this interval, observations of the upstream solar wind conditions from OMNI, and ionospheric convection data using SuperDARN, indicate a large-scale magnetospheric morphology consistent with positive IMF By penetration into the magnetotail. Inspection of the in-situ Cluster magnetic field data reveals a flapping of the magnetotail current sheet; a phenomenon known to influence dusk-dawn flow. Results from the curlometer analysis technique suggest that the dusk-dawn flow perturbations may have been driven by the J x B force associated with a dawnward-propagating flapping of the magnetotail current sheet, locally overriding the expected IMF By control of the flows. We conclude that invocation of the untwisting hypothesis may be inappropriate when interpreting intervals of dynamic magnetotail behaviour such as during current sheet flapping.


2005 ◽  
Vol 23 (5) ◽  
pp. 1763-1770 ◽  
Author(s):  
A. Grocott ◽  
T. K. Yeoman ◽  
S. E. Milan ◽  
S. W. H. Cowley

Abstract. This paper presents the first interhemispheric radar observations interpreted as the ionospheric response to tail reconnection during IMF-northward non-substorm intervals. SuperDARN measurements of plasma convection in the nightside ionospheres of both hemispheres, taken on 21–22 February and 26–27 April 2000, show bursts of flow in the midnight sector which are understood to be characteristic of such phenomena. Upstream interplanetary magnetic field data confirm that the field orientation at the dayside magnetopause was northwards, but with a significant IMF By component (negative during the first interval, positive during the second), for many hours prior to the bursts being observed. During the By-negative interval the bursts were directed westwards in the Northern Hemisphere and eastwards in the Southern Hemisphere; during the By-positive interval their directions were reversed. These two asymmetries between the different orientations of IMF By and between the two hemispheres are key to our understanding of the magnetospheric phenomenon responsible for generating the bursts. They provide further evidence in support of the idea that the bursts are a result of reconnection in an asymmetric tail under the prolonged influence of IMF By. Concurrent data from ground magnetometers and geosynchronous satellites confirm that the bursts have no associated substorm characteristics, consistent with previous studies. Keywords. Ionosphere (Plasma convection; Ionospheremagnetosphere interactions) – Magnetospheric Physics (Magnetotail)


1985 ◽  
Vol 106 ◽  
pp. 251-252
Author(s):  
Y. Sofue ◽  
M. Fujimoto

The distribution of Faraday rotation measure (RM) of extragalactic radio sources shows that a large-scale magnetic field in the Galaxy is oriented along the spiral arms. The field lines change direction from one arm to the next in the inter-arm region.


Sign in / Sign up

Export Citation Format

Share Document