scholarly journals Distribution of Neutrino Fluxes from Pulsar Shells

1981 ◽  
Vol 94 ◽  
pp. 207-208
Author(s):  
M. M. Shapiro ◽  
R. Silberberg

Young pulsars apparently have a distribution of initial power outputs N (> Po−γ), with 1/2 < γ < 1 and Po ≳ 1038 ergs/sec. Assuming that ultra-high-energy (E ≳ 1015 eV) cosmic-ray nuclei are accelerated at the central pulsar, a young, dense supernova shell can be a powerful source of high-energy neutrinos. With an optical array placed in a volume of one km3 at great ocean depths, as proposed for the DUMAND detector, it is likely that ≳ 103 hadronic and electromagnetic cascades induced by neutrinos would be recorded for a stellar collapse within our Galaxy. Such supernovae occur about 8 times per century. Neutrinos from young supernova shells in the Virgo supercluster would be marginally detectable via neutrinos with N(> Po) ∝ Po−1/2, but unobservable if N(> Po) ∝ Po−1.

2019 ◽  
Vol 210 ◽  
pp. 02001
Author(s):  
Sergey Ostapchenko

The differences between contemporary Monte Carlo generators of high energy hadronic interactions are discussed and their impact on the interpretation of experimental data on ultra-high energy cosmic rays (UHECRs) is studied. Key directions for further model improvements are outlined. The prospect for a coherent interpretation of the data in terms of the UHECR composition is investigated.


2011 ◽  
Vol 20 (03) ◽  
pp. 299-317
Author(s):  
E. STRAZZERI ◽  
O. CATALANO ◽  
B. SBARUFATTI

In the context of detection of Ultra High Energy Cosmic Ray (UHECR) showers from space the details of fluorescence light production and transmission in the atmosphere are given. An analytical model of the fluorescence yield, in dependence on nitrogen molecular parameters and the atmospheric conditions, is presented. Seasonal and geographical variations of the total fluorescence photon yield between 300 nm and 400 nm in air excited by 0.85 MeV electrons are shown as a function of the altitude, using different atmospheric models. In the frame of a satellite-based UHECR experiment the fluorescence yield has been corrected by the overall atmospheric transmission which takes into account, in the simplest approximation, the wavelength-dependent scattering and absorption of the fluorescence light from air molecules, from stratospheric ozone, and from aerosol. The effect of the atmospheric attenuation on the fluorescence yield is shown as a function of the altitude of the emission point of light.


2021 ◽  
Vol 128 ◽  
pp. 102564
Author(s):  
Lukas Merten ◽  
Margot Boughelilba ◽  
Anita Reimer ◽  
Paolo Da Vela ◽  
Serguei Vorobiov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document