Isotropization of ultra-high energy cosmic ray arrival directions by radio ghosts

2001 ◽  
Vol 16 (1) ◽  
pp. 47-66 ◽  
Author(s):  
G Medina-Tanco ◽  
T.A Enßlin
Universe ◽  
2018 ◽  
Vol 4 (11) ◽  
pp. 128 ◽  
Author(s):  
Dariusz Góra ◽  

The Pierre Auger Observatory is the world’s largest operating detection system for the observation of ultra high energy cosmic rays (UHECRs), with energies above 10 17 eV. The detector allows detailed measurements of the energy spectrum, mass composition and arrival directions of primary cosmic rays in the energy range above 10 17 eV. The data collected at the Auger Observatory over the last decade show the suppression of the cosmic ray flux at energies above 4 × 10 19 eV. However, it is still unclear if this suppression is caused by the energy limitation of their sources or by the Greisen–Zatsepin–Kuzmin (GZK) cut-off. In such a case, UHECRs would interact with the microwave background (CMB), so that particles traveling long intergalactic distances could not have energies greater than 5 × 10 19 eV. The other puzzle is the origin of UHECRs. Some clues can be drawn from studying the distribution of their arrival directions. The recently observed dipole anisotropy has an orientation that indicates an extragalactic origin of UHECRs. The Auger surface detector array is also sensitive to showers due to ultra high energy neutrinos of all flavors and photons, and recent neutrino and photon limits provided by the Auger Observatory can constrain models of the cosmogenic neutrino production and exotic scenarios of the UHECRs origin, such as the decays of super heavy, non-standard-model particles. In this paper, the recent results on measurements of the energy spectrum, mass composition and arrival directions of cosmic rays, as well as future prospects are presented.


Author(s):  
Dariusz Gora

The Pierre Auger Observatory is the world's largest operating detection system for the observation of ultra high energy cosmic rays (UHECRs). The detector allows detailed measurements of their energy spectrum, mass composition and arrival directions of primary cosmic rays in the energy range above $10^{17}$ eV. The data collected at the Observatory over the last decade show the suppression of the cosmic ray flux at energies above $4\times10^{19}$ eV. However, it is still unclear if this suppression is caused by the propagation of cosmic rays or rather by energy limitation of their sources. The other puzzle is the origin of UHECRs. Some clues can be drawn from studying the distribution of their arrival directions. The recently observed dipole anisotropy has an orientation which indicates an extragalactic origin of UHECRs. The Auger surface detector array is also sensitive to showers due to ultra high energy neutrinos of all flavours and photons, and recent neutrino and photon limits provided by the Observatory can constrain models of the cosmogenic neutrino production and exotic scenarios of the UHECRs origin, such as the decays of super heavy particles. In this paper the recent results on measurements of the energy spectrum, mass composition and arrival directions of cosmic rays, and future prospects are presented.


2016 ◽  
Vol 25 (06) ◽  
pp. 1650065 ◽  
Author(s):  
A. A. Ivanov

Arrival directions of ultra-high energy cosmic rays (UHECRs) exhibit mainly an isotropic distribution with some small deviations in particular energy bins. In this paper, the Yakutsk array data are tested for circular uniformity of arrival directions in right ascension (RA) using two methods appropriate for the energy ranges below and above [Formula: see text] eV. No statistically significant deviation from uniformity is found in the arrival directions of cosmic rays (CRs) detected within the observation period 1974–2000.


2021 ◽  
Vol 81 (9) ◽  
Author(s):  
Marcus Wirtz ◽  
Teresa Bister ◽  
Martin Erdmann

AbstractWe present a novel method to search for structures of coherently aligned patterns in ultra-high energy cosmic-ray arrival directions simultaneously across the entire sky. This method can be used to obtain information on the Galactic magnetic field, in particular the integrated component perpendicular to the line of sight, from cosmic-ray data only. Using a likelihood-ratio approach, neighboring cosmic rays are related by rotatable, elliptically shaped density distributions and the significance of their alignment with respect to circular distributions is evaluated. In this way, a vector field tangential to the celestial sphere is fitted which approximates the local deflections in cosmic magnetic fields if significant deflection structures are detected. The sensitivity of the method is evaluated on the basis of astrophysical simulations of the ultra-high energy cosmic-ray sky, where a discriminative power between isotropic and signal-induced scenarios is found.


2011 ◽  
Vol 20 (supp02) ◽  
pp. 50-56
Author(s):  
◽  
PETER SCHIFFER

The Pierre Auger Observatory is the world's largest experiment for the measurement of ultra-high energy cosmic rays (UHECRs). These UHECRs are assumed to be to be charged particles, and thus are deflected in cosmic magnetic fields. Recent results of the Pierre Auger Observatory addressing the complex of energy ordering of the UHECRs arrival directions are reviewed in this contribution. So far no significant energy ordering has been observed.


2019 ◽  
Vol 210 ◽  
pp. 02001
Author(s):  
Sergey Ostapchenko

The differences between contemporary Monte Carlo generators of high energy hadronic interactions are discussed and their impact on the interpretation of experimental data on ultra-high energy cosmic rays (UHECRs) is studied. Key directions for further model improvements are outlined. The prospect for a coherent interpretation of the data in terms of the UHECR composition is investigated.


Sign in / Sign up

Export Citation Format

Share Document