scholarly journals 9.8. Bars and black holes

1998 ◽  
Vol 184 ◽  
pp. 397-398
Author(s):  
Eric Emsellem

Massive black holes are now thought to be present at the centre of a fair fraction of nearby galaxies. The origin of these central dark masses is still unknown, although tentative explanations have been proposed in an attempt to reconcile non-active galaxies with AGNs and quasars. The activity of a galaxy may then mostly depend on the efficiency of gas accretion onto the central dark object. It is important to note that many of the galaxies which are today candidates for the presence of a massive black hole are spirals. In this context, bars should play an important role in the evolution (and formation?) of a central mass, since (1) they are present in a significant fraction of spirals, (2) they may be efficient drivers of gas accretion. If indeed most of present day galaxies hosts a central dark mass, then bars and black holes should coexist in a significant fraction of them. We examine here the cases of 3 edge-on galaxies which are candidates for the presence of a central black holes: NGC 4570, NGC 3115 and M 104.

1989 ◽  
Vol 134 ◽  
pp. 217-232
Author(s):  
Alan Dressler

A growing body of evidence from stellar dynamics in the nuclei of galaxies indicates that supermassive black holes of 107–109 M0 are common. The two best cases are M31 and M32, for which dark, central mass concentrations are the only straightforward interpretation. M87 continues to be a possible location of an even more massive black hole, but new observations and models by the author and D. Richstone effectively rule out the high black hole mass ∼5 × 109 M0 claimed by Sargent, Young, and collaborators. New data are available for several other nearby galaxies which also show kinematic signatures that could also be due to supermassive black holes. The Hubble Space Telescope will play the key role in strengthening these cases and eliminating, for the best examples, alternative models which do not require supermassive black holes.


1997 ◽  
Vol 163 ◽  
pp. 620-625 ◽  
Author(s):  
H. Ford ◽  
Z. Tsvetanov ◽  
L. Ferrarese ◽  
G. Kriss ◽  
W. Jaffe ◽  
...  

AbstractHST images have led to the discovery that small (r ~ 1″ r ~ 100 – 200 pc), well-defined, gaseous disks are common in the nuclei of elliptical galaxies. Measurements of rotational velocities in the disks provide a means to measure the central mass and search for massive black holes in the parent galaxies. The minor axes of these disks are closely aligned with the directions of the large–scale radio jets, suggesting that it is angular momentum of the disk rather than that of the black hole that determines the direction of the radio jets. Because the disks are directly observable, we can study the disks themselves, and investigate important questions which cannot be directly addressed with observations of the smaller and unresolved central accretion disks. In this paper we summarize what has been learned to date in this rapidly unfolding new field.


Author(s):  
Pavel Kroupa ◽  
Ladislav Subr ◽  
Tereza Jerabkova ◽  
Long Wang

Abstract The observation of quasars at very high redshift such as Pōniuā’ena is a challenge for models of super-massive black hole (SMBH) formation. This work presents a study of SMBH formation via known physical processes in star-burst clusters formed at the onset of the formation of their hosting galaxy. While at the early stages hyper-massive star-burst clusters reach the luminosities of quasars, once their massive stars die, the ensuing gas accretion from the still forming host galaxy compresses its stellar black hole (BH) component to a compact state overcoming heating from the BH–BH binaries such that the cluster collapses, forming a massive SMBH-seed within about a hundred Myr. Within this scenario the SMBH–spheroid correlation emerges near-to-exactly. The highest-redshift quasars may thus be hyper-massive star-burst clusters or young ultra-compact dwarf galaxies (UCDs), being the precursors of the SMBHs that form therein within about 200 Myr of the first stars. For spheroid masses ≲ 109.6 M⊙ a SMBH cannot form and instead only the accumulated nuclear cluster remains. The number evolution of the quasar phases with redshift is calculated and the possible problem of missing quasars at very high redshift is raised. SMBH-bearing UCDs and the formation of spheroids are discussed critically in view of the high redshift observations. A possible tension is found between the high star-formation rates (SFRs) implied by downsizing and the observed SFRs, which may be alleviated within the IGIMF theory and if the downsizing times are somewhat longer.


2019 ◽  
Vol 15 (S359) ◽  
pp. 35-36
Author(s):  
Paramita Barai

AbstractGas accretion onto central supermassive black holes of active galaxies and resulting energy feedback, is an important component of galaxy evolution, whose details are still unknown especially at early cosmic epochs. We investigate BH growth and feedback in quasar-host galaxies at z ⩾ 6 by performing cosmological hydrodynamical simulations. We simulate the 2R200 region around a 2 × 1012Mʘ halo at z = 6, inside a (500 Mpc)3 comoving volume, using the zoom-in technique. We find that BHs accrete gas at the Eddington rate over z = 9–6. At z = 6, our most-massive BH has grown to MBH = 4 × 109 Mʘ. Star-formation is quenched over z = 8–6.


Author(s):  
Michael L Katz ◽  
Luke Zoltan Kelley ◽  
Fani Dosopoulou ◽  
Samantha Berry ◽  
Laura Blecha ◽  
...  

Abstract ESA and NASA are moving forward with plans to launch LISA around 2034. With data from the Illustris cosmological simulation, we provide analysis of LISA detection rates accompanied by characterization of the merging massive black hole population. Massive black holes of total mass ∼105 − 1010M⊙ are the focus of this study. We evolve Illustris massive black hole mergers, which form at separations on the order of the simulation resolution (∼kpc scales), through coalescence with two different treatments for the binary massive black hole evolutionary process. The coalescence times of the population, as well as physical properties of the black holes, form a statistical basis for each evolutionary treatment. From these bases, we Monte Carlo synthesize many realizations of the merging massive black hole population to build mock LISA detection catalogs. We analyze how our massive black hole binary evolutionary models affect detection rates and the associated parameter distributions measured by LISA. With our models, we find massive black hole binary detection rates with LISA of ∼0.5 − 1 yr−1 for massive black holes with masses greater than 105M⊙. This should be treated as a lower limit primarily because our massive black hole sample does not include masses below 105M⊙, which may significantly add to the observed rate. We suggest reasons why we predict lower detection rates compared to much of the literature.


2019 ◽  
Vol 488 (3) ◽  
pp. 4042-4060 ◽  
Author(s):  
Stephen Thorp ◽  
Eli Chadwick ◽  
Alberto Sesana

ABSTRACT We compute the expected cosmic rates of tidal disruption events (TDEs) induced by individual massive black holes (MBHs) and by MBH binaries (MBHBs) – with a specific focus on the latter class – to explore the potential of TDEs to probe the cosmic population of sub-pc MBHBs. Rates are computed by combining MBH and MBHB population models derived from large cosmological simulations with estimates of the induced TDE rates for each class of objects. We construct empirical TDE spectra that fit a large number of observations in the optical, UV, and X-ray and consider their observability by current and future survey instruments. Consistent with results in the literature, and depending on the detailed assumption of the model, we find that LSST and Gaia in optical and eROSITA in X-ray will observe a total of 3000–6000, 80–180, and 600–900 TDEs per year, respectively. Depending on the survey, 1 to several per cent of these are prompted by MBHBs. In particular, both LSST and eROSITA are expected to see 150–450 MBHB-induced TDEs in their respective mission lifetimes, including 5–100 repeated flares. The latter provide an observational sample of binary candidates with relatively low contamination and have the potential of unveiling the sub-pc population of MBHBs in the mass range $10^5\lt M\lt 10^7\, \mathrm{M}_\odot$, thus informing future low-frequency gravitational wave observatories.


1994 ◽  
Vol 159 ◽  
pp. 504-504
Author(s):  
D. Friedli

Observations of nearby galaxies indicate non-negligible (dark) mass in their nuclei, interpreted either as very dense clusters or Massive Black Holes (MBH's). The latter hypothesis is supported by the widespread idea that MBH's can be the engine powering Active Galactic Nuclei (AGN's), and that interaction- or bar-induced central mass accretion can feed MBH's with large scale, plentiful fuel. However, there are fewer AGN's at the present time than at high redshifts, although many if not all bright galaxies must harbour relics of central active MBH's. How can we explain the fact that some AGN's are now turned off? Is it only due to the exhaustion or evaporation of the available fuel, and/or to the lower rate of interactions at the present epoch?


2016 ◽  
Vol 12 (S324) ◽  
pp. 132-133
Author(s):  
Aurora Clerici ◽  
Andreja Gomboc

AbstractTidal disruption events are a powerful tool to study quiescent massive black holes residing in the centre of galaxies. Occasionally, astrophysical objects such as stars, planets and smaller bodies are captured and tidally disrupted by the massive black hole, giving rise to a luminous flare. A detailed study of disruption parameters and the emitted radiation can give important insights on the black hole and its surroundings.


2003 ◽  
Vol 214 ◽  
pp. 243-245
Author(s):  
Stefanie Komossa ◽  
Weimin Yuan ◽  
Da Wei Xu

In the last few years, several giant-amplitude, non-recurrent X-ray flares have been observed from optically non-active galaxies. The observations were interpreted in terms of the long-predicted tidal disruption flares of stars captured by supermassive black holes. In this contribution, we review the observations and interpretation of the X-ray flares and add some new thoughts. Future X-ray observations of the flare events are expected to open up a new window to detect and investigate SMBHs and their immediate environment in galaxies. Here, we concentrate on the possibility to detect new X-ray flares in deep fields with the planned European X-ray mission XEUS.


2009 ◽  
Vol 5 (S267) ◽  
pp. 26-33 ◽  
Author(s):  
Marta Volonteri

AbstractMassive black holes (MBHs) are nowadays believed to reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than their hosts (~ 0.1%), are linked to the evolution of galactic structure. When did it all start? In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation have to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for “seed” black holes that are likely to take place at early cosmic epochs, and possible observational tests of these scenarios.


Sign in / Sign up

Export Citation Format

Share Document