scholarly journals Lithium Abundance and Spacial Distribution of T Tauri Stars

1992 ◽  
Vol 150 ◽  
pp. 395-397
Author(s):  
Jane Gregorio-Hetem ◽  
Jacques R.D. Lépine

We determined temperatures and Lithium 6707 A resonance line equivalent width of a sample of 62 T Tauri stars. Lithium abundances were then estimated by using a grid of curves of growth. The lithium abundance is shown to decrease with the distance of the stars to the nearest dense core of a molecular cloud. This effect is interpreted as being due to the ages of the stars, the youngest ones being closer to still active star formation regions.

1996 ◽  
Vol 176 ◽  
pp. 345-351 ◽  
Author(s):  
F. C. Fekel

Observations of lithium in sunspots resulted in the prediction of significant lithium equivalent-width variability in chromospherically active stars. Lithium observations of several types of active stars, such as pre-main-sequence stars and late-type dwarfs in very young clusters, whose members are assumed to be nearly coeval, as well as post-main-sequence objects, show a significant range of abundances. Thus, a number of researchers over the past decade have investigated star spots as the possible cause of the various observed lithium-abundance spreads. Observationally, some evidence has been found for lithium equivalent-width variations. Computed synthetic spectra indicate that under certain conditions significant variations should be detected, but such conditions are not often met except perhaps in the most active stars. While variations have been claimed for some T Tauri stars, simultaneous photometry and spectroscopy will be needed to explore the complex relation of spots and lithium-abundance variations. The fact that some post-main-sequence stars have lithium abundances similar to those of pre-main-sequence stars complicates the identification of isolated pre-main-sequence systems.


1991 ◽  
Vol 147 ◽  
pp. 353-356
Author(s):  
N. Ohashi ◽  
R. Kawabe ◽  
M. Hayashi ◽  
M. Ishiguro

The CS (J = 2 — 1) line and 98 GHz continuum emission have been observed for 11 protostellar IRAS sources in the Taurus molecular cloud with resolutions of 2.6″−8.8″ (360 AU—1200 AU) using the Nobeyama Millimeter Array (NMA). The CS emission is detected only toward embedded sources, while the continuum emission from dust grains is detected only toward visible T Tauri stars except for one embedded source, L1551-IRS5. This suggests that the dust grains around the embedded sources do not centrally concentrate enough to be detected with our sensitivity (∼4 m Jy r.m.s), while dust grains in disks around the T Tauri stars have enough total mass to be detected with the NMA. The molecular cloud cores around the embedded sources are moderately extended and dense enough to be detected in CS, while gas disks around the T Tauri are not detected because the radius of such gas disks may be smaller than 70 (50 K/Tex) AU. These results imply that the total amount of matter within the NMA beam size must increase when the central objects evolve into T Tauri stars from embedded sources, suggesting that the compact and highly dense disks around T Tauri stars are formed by the dynamical mass accretion during the embedded protostar phase.


1987 ◽  
Vol 115 ◽  
pp. 64-66
Author(s):  
Yoshio Tomita ◽  
Hiroshi Ohtani

To find evidence for collective star formation without massive stars in the dark cloud complex Kh141 (Saito 1980), a search for T-Tauri stars has been made.


1988 ◽  
Vol 96 ◽  
pp. 297 ◽  
Author(s):  
Frederick M. Walter ◽  
A. Brown ◽  
R. D. Mathieu ◽  
P. C. Myers ◽  
F. J. Vrba
Keyword(s):  
X Ray ◽  

1981 ◽  
Vol 251 ◽  
pp. 113 ◽  
Author(s):  
M. S. Giampapa ◽  
N. Calvet ◽  
C. L. Imhoff ◽  
L. V. Kuhi

1996 ◽  
Vol 468 ◽  
pp. 306 ◽  
Author(s):  
Eric D. Feigelson
Keyword(s):  

1995 ◽  
Vol 151 ◽  
pp. 216-217
Author(s):  
R. Neuhäuser ◽  
Th. Preibisch

AbstractWe study the X-ray emission of several hundred (young, low-mass, late-type, pre-main sequence) T Tauri stars (TTS) in the Taurus T association, a nearby well-studied region of ongoing star formation. We report on X-ray emission variability of TTS as observed with the flux-limited ROSAT All-Sky Survey (RASS). Since RASS observations are spatially unbiased, we can investigate the X-ray flare rate of TTS on a large sample. We find that large flares are very rare (once per year), while medium-size flares can occur once in ∼ 40 days.


1987 ◽  
Vol 115 ◽  
pp. 417-434 ◽  
Author(s):  
Frank H. Shu ◽  
Susana Lizano ◽  
Fred C. Adams

The problem of gravitational collapse and star formation is entirely different when the ratio of the mass of a molecular cloud Mcl to its magnetic flux Φ is high than when it is low. Magnetically-diluted overall collapse of a large dense core and the formation of an OB association or a bound cluster are the likely outcomes in the former case; quasi-static contraction of many small cores and their ultimate collapse to form a T association, in the latter. In our picture, the birth of a T association in a dark cloud like Taurus proceeds by ambipolar diffusion on a time-scale of ∼ 107 years. As magnetic and turbulent support is gradually lost from a small condensing core, it approaches a state resembling a slowly rotating singular isothermal sphere which, when it passes the brink of instability, collapses from “inside-out,” building up a central protostar and nebular disk. The emergent spectral energy distributions of theoretical models in this stage of protostellar evolution resemble closely those of recently found sources with steep spectra in the infrared. The protostellar phase is ended by the reversal of the infall by an intense stellar wind, whose ultimate source of energy derived from the differential rotation of the star. We argue that the initial breakout is likely to occur along the rotational poles, leading to collimated jets and bipolar outflows. The stellar jet eventually widens to sweep out gas in nearly all 4π steradian, revealing at the center a T Tauri star and a remnant nebular disk. We give rough scaling relations which must apply if an analogous process is to succeed for producing high mass stars.


2012 ◽  
Vol 8 (S292) ◽  
pp. 50-50
Author(s):  
Vicki Lowe ◽  
Maria R. Cunningham ◽  
James S. Urquhart ◽  
Shinji Horiuchi

AbstractHigh-mass stars are known to be born within giant molecular clouds (GMCs); However, the exact processes involved in forming a high-mass star are still not well understood. It is clear that high-mass stars do not form in isolation, and that the processes surrounding high-mass star formation may affect the environment of the entire molecular cloud. We are studying the GMC associated with RCW 106 (G333), which is one of the most active massive-star formation regions in the Galactic plane. This GMC, located at l = 333° b = − 0.5°, has been mapped in over 20 molecular line transitions with the Mopra radio telescope (83-110 GHz), in Australia, and with the Swedish-ESO Submillimeter Telescope (SEST) in the 1.2 mm cool dust continuum. The region is also within the Spitzer GLIMPSE infrared survey (3.6, 4.5, 5.8, and 8.0 μm) area. We have decomposed the dust continuum using a clump-finding algorithm (CLUMPFIND), and are using the multiple molecular line traditions from the Mopra radio telescope to classify the type and stage of star formation taking place therein. Having accurate physical temperatures of the star forming clumps is essential to constrain other parameters to within useful limits. To achieve this, we have obtained pointed NH3 observations from the Tidbinbilla 70-m radio telescope, in Australia, towards these clumps.


Sign in / Sign up

Export Citation Format

Share Document