scholarly journals Radio Continuum Observations of the Barred Galaxy NGC 4314

1987 ◽  
Vol 115 ◽  
pp. 626-627 ◽  
Author(s):  
J.A. García-Barreto ◽  
P. Pişmiş

VLA observations have been made of the continuum emission at 20-cm from the barred spiral galaxy NGC 4314 with an angular resolution of 3.5 arcseconds that corresponds to a linear scale of approximately 156 pc at a distance to the galaxy. This resolution was sufficient to resolve the central region into several compact sources. The radiation is linearly polarized which may indicate a non-thermal origin. No emission was detected from the extended bar to a level of 130 Jy.

1996 ◽  
Vol 169 ◽  
pp. 311-316
Author(s):  
P.J. Boyce ◽  
R. J. Cohen

The galactic centre contains the largest concentration of molecular clouds in the Galaxy. The clouds in the central region are unusual in having large linewidths and masses, and large non-circular motions. Previous surveys of their distribution in the central region have been carried out in OH (Robinson & McGee 1970; Cohen & Few 1976), H2CO (Whiteoak & Gardner 1979; Cohen & Few 1981), CO (Bania 1977; Dame et al. 1987; Bally et al. 1987, 1988) and CS (Bally et al. 1987, 1988). The OH groundstate lines at 18cm wavelength have certain advantages for such a survey. The OH lines appear in absorption against the galactic centre continuum sources, and against the continuum emission from the disk of the Galaxy. The absorption spectra are sensitive to relatively small molecular column densities. In addition they can give information on the relative positions of the molecular gas and the radio continuum sources. This paper describes results from an absorption line survey of the galactic centre region in the OH main lines at 1667.359 MHz and 1665.402 MHz (Boyce & Cohen 1994).


1997 ◽  
Vol 166 ◽  
pp. 555-558
Author(s):  
M. Dumke ◽  
M. Krause

AbstractWe have observed a small sample of edge-on galaxies in total and linearly polarized radio continuum emission at λ6.2 cm, using the Effelsberg 100m telescope. The resulting maps were combined with available VLA data in order to obtain high-sensitivity radio images which have a sufficient angular resolution and do not suffer from the so-called missing-spacing problem.From an analysis of these images (together with 2.8cm and 20cm data) we get the following results: 1. The radio emission perpendicular to the plane can be described by a two-component exponential distribution with scale-heights of ~ 300 pc and ~ 1.8 kpc, independently of the star forming activity and interaction state. 2. In the disk of the non-interacting galaxies of our sample the thermal fraction of the emission seems to be higher than usually deduced from observations of face-on galaxies. 3. The fractional polarization p increases with increasing galactic height, reaches a maximum at h ~ 1 – 3 kpc, and decreases again. In general p is lower in actively star forming galaxies.


1964 ◽  
Vol 20 ◽  
pp. 283-289 ◽  
Author(s):  
D. S. Mathewson ◽  
J. R. Healey

A considerable proportion of the radio emission at high frequencies from the Galaxy is of thermal origin. This thermal radiation appears to originate both in very extended regions and in discrete sources. It has always been difficult to compare the radio and optical data for these HII regions as galactic optical observations are hampered by heavy obscuration. However, the HII regions in the Magellanic Clouds are relatively free from obscuration, and spectrophotometry by Dickel, Aller, and Faulkner (this volume, paper 63) and Henize (1956) have provided very good measurements of Hβ and Hα flux densities and the relative intensities of the OII, OIII lines. Also the distance to the Clouds is fairly well known (about 55 kpc) so that the linear dimensions of the HII regions may be estimated with some degree of accuracy in contrast to the galactic emission nebulae.


1979 ◽  
Vol 84 ◽  
pp. 113-118
Author(s):  
R. Wielebinski

All sky surveys of the radio continuum emission give us the basic information on the distribution of the nonthermal emission in the Galaxy. At metre wavelengths, where nonthermal emission is dominant, good angular resolution is difficult to attain. For many years the best surveys near 2 m wavelength gave us a picture of the galaxy with ∼ 2° resolution. At centimetre wavelengths, where arc min resolution is available, the intense HII regions dominate the radio sky. Supernova remnants have a distribution somewhat similar to that of the discrete HII regions and must be delineated by various methods in high resolution galactic plane surveys in the decimetre wavelength range.


2007 ◽  
Vol 3 (S242) ◽  
pp. 180-181
Author(s):  
M. A. Trinidad ◽  
S. Curiel ◽  
J. M. Torrelles ◽  
L. F. Rodríguez ◽  
V. Migenes ◽  
...  

AbstractWe present simultaneous observations of continuum (3.5 and 1.3cm) and water maser line emission (1.3cm) carried out with the VLA-A toward the high-mass object IRAS 23139+5939. We detected two radio continuum sources at 3.5cm separated by 0”5 (~2400 AU), I23139 and I23139S. Based on the observed continuum flux density and the spectral index, we suggest that I23139 is a thermal radio jet associated with a high-mass YSO. On the other hand, based on the spatio-kinematical distribution of the water masers, together with the continuum emission information, we speculate that I23139S is also a jet source powering some of the masers detected in the region.


1990 ◽  
Vol 124 ◽  
pp. 201-208 ◽  
Author(s):  
A. S. Asatrian ◽  
A. R. Petrosian ◽  
F. Börngen

AbstractOn the basis of direct UBV and spectral observations at Tautenburg (DDR) 2m and Special Observatory (USSR) 6m telescopes respectively the colorimetric and spectral investigations of the megamaser galaxy MRK 273 are carried out. It is seen that: MRK 273 is in a physical group of galaxies, which contains at least five members. Two bright central condensations of MRK 273 are Seyfert nuclei. The area of the main body of MRK 273 which contains both Seyfert nuclei and from which comes out a straight tail, is redder than the remaining part of the galaxy. The tail has a pronounced blue color and most probably radiates in [OIII] λ5007 line. Observed radio continuum, OH and HI absorption features are related to bright “a” nucleus of galaxy. We come to the conclusion that MRK 273 which is the member of the group of the galaxies is itself a close system of two objects with AGNs. The tail, with radiation being of thermal origin, probably is the result of the interaction of these galaxies.


2019 ◽  
Vol 627 ◽  
pp. A58 ◽  
Author(s):  
N. L. Isequilla ◽  
M. Fernández-López ◽  
P. Benaglia ◽  
C. H. Ishwara-Chandra ◽  
S. del Palacio

We present observations of the Cygnus OB2 region obtained with the Giant Metrewave Radio Telescope (GMRT) at frequencies of 325 and 610 MHz. In this contribution we focus on the study of proplyd-like objects (also known as free-floating evaporating gas globules or frEGGs) that typically show an extended cometary morphology. We identify eight objects previously studied at other wavelengths and derive their physical properties by obtaining their optical depth at radio-wavelengths. Using their geometry and the photoionization rate needed to produce their radio-continuum emission, we find that these sources are possibly ionized by a contribution of the stars Cyg OB2 #9 and Cyg OB2 #22. Spectral index maps of the eight frEGGs were constructed, showing a flat spectrum in radio frequencies in general. We interpret these as produced by optically thin ionized gas, although it is possible that a combination of thermal emission, not necessarily optically thin, produced by a diffuse gas component and the instrument response (which detects more diffuse emission at low frequencies) can artificially generate negative spectral indices. In particular, for the case of the Tadpole we suggest that the observed emission is not of non-thermal origin despite the presence of regions with negative spectral indices in our maps.


1980 ◽  
Vol 5 ◽  
pp. 177-184 ◽  
Author(s):  
J. M. van der Hulst

During the last few years detailed and sensitive observations of the radio emission from the nuclei of many normal spiral galaxies has become available. Observations from the Very Large Array (VLA) of the National Radio Astronomy Observatory (NRAO1), in particular, enable us to distinguish details on a scale of ≤100 pc for galaxies at distances less than 21 Mpc. The best studied nucleus, however, still is the center of our own Galaxy (see Oort 1977 and references therein). Its radio structure is complex. It consists of an extended non-thermal component 200 × 70 pc in size, with embedded therein several giant HII regions and the central source Sgr A (˜9 pc in size). Sgr A itself consists of a thermal source, Sgr A West, located at the center of the Galaxy, and a weaker, non-thermal source, Sgr A East. Sgr A West moreover contains a weak, extremely compact (≤10 AU) source. The radio morphology of several other galactic nuclei is quite similar to that of the Galactic Center, as will be discussed in section 2. Recent reviews of the radio properties of the nuclei of normal galaxies have been given by Ekers (1978a,b) and De Bruyn (1978). The latter author, however, concentrates on galaxies with either active nuclei or an unusual radio morphology. In this paper I will describe recent results from the Westerbork Synthesis Radio Telescope (WSRT, Hummel 1979), the NRAO 3-element interferometer (Carlson, 1977; Condon and Dressel 1978), and the VLA (Heckman et al., 1979; Van der Hulst et al., 1979). I will discuss the nuclear radio morphology in section 2, the luminosities in section 3, and the spectra in section 4. In section 5 I will briefly comment upon the possible implications for the physical processes in the nuclei that are responsible for the radio emission.


1978 ◽  
Vol 77 ◽  
pp. 33-48 ◽  
Author(s):  
P.C. van der Kruit

This review concerns the large-scale structure of radio continuum emission in spiral galaxies (“the smooth background”), by which we mean the distribution of radio surface brightness at scales larger than, say, 1 kpc. Accordingly the nuclear emission and structure due to spiral arms and HII regions will not be a major topic of discussion here. Already the first mappings of the galactic background suggested that there is indeed a distribution of radio continuum emission extending throughout the Galaxy. This conclusion has been reinforced by the earliest observations of M31 by showing that the general emission from this object extended over at least the whole optical image. More recently, van der Kruit (1973a, b, c) separated the radio emission from a sample of spiral galaxies observed at 1415 MHz with the Westerbork Synthesis Radio Telescope (WSRT) into a nuclear, spiral arm and “base disk” component, showing that the latter component usually contains most of the flux density. This latter component is largely non-thermal and extends over the whole optical image (see also van der Kruit and Allen, 1976). Clearly it is astrophysically interesting to discuss the large-scale structure of the radio continuum emission.


Sign in / Sign up

Export Citation Format

Share Document