scholarly journals New Data on the Peculiar Galaxy MRK 273

1990 ◽  
Vol 124 ◽  
pp. 201-208 ◽  
Author(s):  
A. S. Asatrian ◽  
A. R. Petrosian ◽  
F. Börngen

AbstractOn the basis of direct UBV and spectral observations at Tautenburg (DDR) 2m and Special Observatory (USSR) 6m telescopes respectively the colorimetric and spectral investigations of the megamaser galaxy MRK 273 are carried out. It is seen that: MRK 273 is in a physical group of galaxies, which contains at least five members. Two bright central condensations of MRK 273 are Seyfert nuclei. The area of the main body of MRK 273 which contains both Seyfert nuclei and from which comes out a straight tail, is redder than the remaining part of the galaxy. The tail has a pronounced blue color and most probably radiates in [OIII] λ5007 line. Observed radio continuum, OH and HI absorption features are related to bright “a” nucleus of galaxy. We come to the conclusion that MRK 273 which is the member of the group of the galaxies is itself a close system of two objects with AGNs. The tail, with radiation being of thermal origin, probably is the result of the interaction of these galaxies.

1987 ◽  
Vol 115 ◽  
pp. 626-627 ◽  
Author(s):  
J.A. García-Barreto ◽  
P. Pişmiş

VLA observations have been made of the continuum emission at 20-cm from the barred spiral galaxy NGC 4314 with an angular resolution of 3.5 arcseconds that corresponds to a linear scale of approximately 156 pc at a distance to the galaxy. This resolution was sufficient to resolve the central region into several compact sources. The radiation is linearly polarized which may indicate a non-thermal origin. No emission was detected from the extended bar to a level of 130 Jy.


1989 ◽  
Vol 136 ◽  
pp. 407-410
Author(s):  
M.C.H. Wright ◽  
J. M. Marr ◽  
D. C. Backer

We report aperture synthesis observations of the HCO+ and HCN J=1–0 molecular lines towards the Galactic center. These data complement existing HCN data and trace a dense molecular ring surrounding the ionized central 2 pc of the Galaxy. The new data are consistent with the model of a clumpy, almost complete ring which is inclined to the line of sight at 50 to 75 degrees. The same structure is seen in HCO+ and in HCN with the exception of an HCN feature at 60 to 100 km/s in the western part of the ring, which is not detected in HCO+ emission. The HCN and HCO+ are collisionally excited in clumps with densities around 10 cm and volume filling factor 1/3 to 1/30. H13 CN emission from the ring was detected at about 1/7 of the intensity of the HCN; the latter is optically thick and is mapping a combination of surface density and excitation temperature. The HCO+ emission shows deep absorption features associated with galactic structure along the line of sight. Absorption features corresponding to the 3 kpc arm, the inner disk and an expanding ring at −195 km/s can be seen in absorption against the Sgr A radio continuum.


1964 ◽  
Vol 20 ◽  
pp. 283-289 ◽  
Author(s):  
D. S. Mathewson ◽  
J. R. Healey

A considerable proportion of the radio emission at high frequencies from the Galaxy is of thermal origin. This thermal radiation appears to originate both in very extended regions and in discrete sources. It has always been difficult to compare the radio and optical data for these HII regions as galactic optical observations are hampered by heavy obscuration. However, the HII regions in the Magellanic Clouds are relatively free from obscuration, and spectrophotometry by Dickel, Aller, and Faulkner (this volume, paper 63) and Henize (1956) have provided very good measurements of Hβ and Hα flux densities and the relative intensities of the OII, OIII lines. Also the distance to the Clouds is fairly well known (about 55 kpc) so that the linear dimensions of the HII regions may be estimated with some degree of accuracy in contrast to the galactic emission nebulae.


1986 ◽  
Vol 64 (4) ◽  
pp. 531-535 ◽  
Author(s):  
Nebojsa Duric ◽  
E. R. Seaquist

Very large array, radio-continuum observations of the edge-on spiral galaxy NGC 3079 are presented. The observations reveal that the nucleus has windlike properties and that the central region of the galaxy exhibits an unusual figure-eight morphology that shows evidence of severe depolarization and a flattening spectral index away from the nucleus. A qualitative description of a model is presented to account for the observed radio properties. It is shown that a wind-driven shock propagating away from the nucleus and focused by the ambient disk gas can give rise to the observed morphology.


2018 ◽  
Vol 618 ◽  
pp. A149 ◽  
Author(s):  
Sol Alonso ◽  
Georgina Coldwell ◽  
Fernanda Duplancic ◽  
Valeria Mesa ◽  
Diego G. Lambas

Aims. With the aim of performing a suitable comparison of the internal process of galactic bars with respect to the external effect of interactions on driving gas toward the inner most region of the galaxies, we explored and compared the efficiency of both mechanisms on central nuclear activity in optically selected active galactic nuclei (AGNs) in spiral galaxies. Methods. We selected homogeneous samples of barred AGNs and active objects residing in pair systems, derived from the Sloan Digital Sky Survey (SDSS). In order to carry out a reliable comparison of both samples (AGNs in barred hosts in isolation and in galaxy pairs), we selected spiral AGN galaxies with similar distributions of redshift, magnitude, stellar mass, color and stellar age population from both catalogs. With the goal of providing an appropriate quantification of the influence of strong bars and interactions on nuclear activity, we also constructed a suitable control sample of unbarred spiral AGNs without a companion and with similar host properties to the other two samples. Results. We found that barred optically selected AGNs show an excess of nuclear activity (as derived from the Lum[OIII]) and accretion rate onto a central black hole (ℛ) with respect to AGNs in pairs. In addition, both samples show an excess of high values of Lum[OIII] and ℛ with respect to unbarred AGNs in the control sample. We also found that the fractions of AGNs with powerful nuclear activity and high accretion rates increase toward more massive hosts with bluer colors and younger stellar populations. Moreover, AGNs with bars exhibit a higher fraction of galaxies with powerful Lum[OIII] and efficient ℛ with respect to AGN galaxies inhabiting pair systems, in bins of different galaxy properties. Regarding AGNs belonging to pair systems, we found that the central nuclear activity is remarkably dependent on the galaxy pair companion features. The Lum[OIII] for AGNs in pairs is clearly enhanced when the galaxy companion exhibits a bright and more massive host with high metallicity, blue color, efficient star formation activity and young stellar population. The results of this work reveal an important capacity of both mechanisms, bars and interactions, to transport material towards the galaxy central regions. In this context, it should also be noted that the internal process of the bar is more efficient at improving the central nuclear activity in AGN objects than that corresponding to the external mechanism of the galaxy–galaxy interactions.


1996 ◽  
Vol 157 ◽  
pp. 83-85 ◽  
Author(s):  
K. Wakamatsu ◽  
M. Hamabe ◽  
M. T. Nishida ◽  
A. Tomita

NGC 7742 is well known for its prominent blue nuclear ring around an EO-like core, and so appears as a Hoag-type galaxy, an elliptical galaxy with an outer ring (Schweizer et al. 1987). The galaxy is classified as Sa(r!) in the Revised Shapley-Ames Catalog (Sandage and Tammann 1987) with an exclamation mark to emphasize the prominence of the ring. Its photographs are published in Laustsen et al. (1987), Wray (1988), and Sandage & Bedke (1994).The ring has a diameter of 19″ = 1.6 kpc at a distance of 17.1 Mpc (Buta & Crocker 1993), and so should be a nuclear ring of the galaxy. Nuclear rings and pseudorings are often detected in strongly barred (SB) galaxies, and interpreted to be linked to the inner Lindblad resonance (Buta & Crocker 1993). These nuclear features are, however, also found in some weakly-barred (SAB) and non-barred (SA) galaxies. NGC 7742 is a galaxy of the highest circular symmetry in its core, ring, and main body, and so the best object for a detailed study of formation mechanisms of nuclear rings in non-barred galaxies.


2019 ◽  
Vol 627 ◽  
pp. A58 ◽  
Author(s):  
N. L. Isequilla ◽  
M. Fernández-López ◽  
P. Benaglia ◽  
C. H. Ishwara-Chandra ◽  
S. del Palacio

We present observations of the Cygnus OB2 region obtained with the Giant Metrewave Radio Telescope (GMRT) at frequencies of 325 and 610 MHz. In this contribution we focus on the study of proplyd-like objects (also known as free-floating evaporating gas globules or frEGGs) that typically show an extended cometary morphology. We identify eight objects previously studied at other wavelengths and derive their physical properties by obtaining their optical depth at radio-wavelengths. Using their geometry and the photoionization rate needed to produce their radio-continuum emission, we find that these sources are possibly ionized by a contribution of the stars Cyg OB2 #9 and Cyg OB2 #22. Spectral index maps of the eight frEGGs were constructed, showing a flat spectrum in radio frequencies in general. We interpret these as produced by optically thin ionized gas, although it is possible that a combination of thermal emission, not necessarily optically thin, produced by a diffuse gas component and the instrument response (which detects more diffuse emission at low frequencies) can artificially generate negative spectral indices. In particular, for the case of the Tadpole we suggest that the observed emission is not of non-thermal origin despite the presence of regions with negative spectral indices in our maps.


1980 ◽  
Vol 5 ◽  
pp. 177-184 ◽  
Author(s):  
J. M. van der Hulst

During the last few years detailed and sensitive observations of the radio emission from the nuclei of many normal spiral galaxies has become available. Observations from the Very Large Array (VLA) of the National Radio Astronomy Observatory (NRAO1), in particular, enable us to distinguish details on a scale of ≤100 pc for galaxies at distances less than 21 Mpc. The best studied nucleus, however, still is the center of our own Galaxy (see Oort 1977 and references therein). Its radio structure is complex. It consists of an extended non-thermal component 200 × 70 pc in size, with embedded therein several giant HII regions and the central source Sgr A (˜9 pc in size). Sgr A itself consists of a thermal source, Sgr A West, located at the center of the Galaxy, and a weaker, non-thermal source, Sgr A East. Sgr A West moreover contains a weak, extremely compact (≤10 AU) source. The radio morphology of several other galactic nuclei is quite similar to that of the Galactic Center, as will be discussed in section 2. Recent reviews of the radio properties of the nuclei of normal galaxies have been given by Ekers (1978a,b) and De Bruyn (1978). The latter author, however, concentrates on galaxies with either active nuclei or an unusual radio morphology. In this paper I will describe recent results from the Westerbork Synthesis Radio Telescope (WSRT, Hummel 1979), the NRAO 3-element interferometer (Carlson, 1977; Condon and Dressel 1978), and the VLA (Heckman et al., 1979; Van der Hulst et al., 1979). I will discuss the nuclear radio morphology in section 2, the luminosities in section 3, and the spectra in section 4. In section 5 I will briefly comment upon the possible implications for the physical processes in the nuclei that are responsible for the radio emission.


1994 ◽  
Vol 159 ◽  
pp. 431-431
Author(s):  
Aa. Sandqvist ◽  
S. Jörsäter ◽  
P. O. Lindblad

The barred spiral Seyfert galaxy NGC 1365 has been observed in the radio continuum at wavelengths of 2, 6 and 20 cm, using scaled arrays of the VLA, and complete maps have been made in the J = 1–0 and J = 2–1 CO emission lines using the SEST. MEM maps of the 6 and 20 cm emission, as well as a spectral index map, have been produced with a resolution of 2″.3 × 0″.9, and the 2-cm map has a resolution of 0″.25 ×0″.10. The dominant continuum features are a number of unresolved sources with relatively flat non-thermal spectral indices (−0.3 to −0.5), immersed in an incomplete circumnuclear ring, which is superimposed upon a background that extends into the bar along the prominent dust lanes. The ring has angular dimensions of 8″ × 20″, which corresponds to a linear dimension of the order of 1 kpc. There is clear evidence of a jet, about 5″ long, originating at the position of the Seyfert nucleus and extending in a southeastern direction, closely along the minor axis of the galaxy. The jet has a steep non-thermal spectral index (–1.0) and is aligned along the axis of a conical shell of [OIII] emission. The CO molecular gas peaks at the nucleus and is strongly concentrated to the nucleus and bar regions with a certain enhancement along the bar. The total molecular hydrogen gas mass in the observed region is 2 × 1010M⊙, with 6 × 109M⊙ lying within 2.2 kpc of the nucleus. A full presentation of the results will be published in Astronomy and Astrophysics in 1994.


Sign in / Sign up

Export Citation Format

Share Document