scholarly journals The Resolved Stellar Populations of Leo A & GR 8

1995 ◽  
Vol 164 ◽  
pp. 417-417
Author(s):  
Eline Tolstoy

The complex effects that determine the shape of an observed Colour Magnitude Diagram (CMD) are best disentangled through numerical simulation. We make synthetic CMDs by randomly extracting stars from theoretical stellar evolution tracks using a series of adopted initial conditions, including an Initial Mass Function. Utilizing reliable error estimates on our photometry provided by the program DoPHOT we apply a Maximum Likelihood technique to quantitatively determine which of the numerous different possible models is the most probable match to the data. From these comparisons we obtain a better understanding of how star formation proceeds in the relatively simple environments provided by Dwarf galaxies.

2021 ◽  
Vol 502 (4) ◽  
pp. 5185-5199
Author(s):  
Hamidreza Mahani ◽  
Akram Hasani Zonoozi ◽  
Hosein Haghi ◽  
Tereza Jeřábková ◽  
Pavel Kroupa ◽  
...  

ABSTRACT Some ultracompact dwarf galaxies (UCDs) have elevated observed dynamical V-band mass-to-light (M/LV) ratios with respect to what is expected from their stellar populations assuming a canonical initial mass function (IMF). Observations have also revealed the presence of a compact dark object in the centres of several UCDs, having a mass of a few to 15 per cent of the present-day stellar mass of the UCD. This central mass concentration has typically been interpreted as a supermassive black hole, but can in principle also be a subcluster of stellar remnants. We explore the following two formation scenarios of UCDs: (i) monolithic collapse and (ii) mergers of star clusters in cluster complexes as are observed in massively starbursting regions. We explore the physical properties of the UCDs at different evolutionary stages assuming different initial stellar masses of the UCDs and the IMF being either universal or changing systematically with metallicity and density according to the integrated Galactic IMF theory. While the observed elevated M/LV ratios of the UCDs cannot be reproduced if the IMF is invariant and universal, the empirically derived IMF that varies systematically with density and metallicity shows agreement with the observations. Incorporating the UCD-mass-dependent retention fraction of dark remnants improves this agreement. In addition, we apply the results of N-body simulations to young UCDs and show that the same initial conditions describing the observed M/LV ratios reproduce the observed relation between the half-mass radii and the present-day masses of the UCDs. The findings thus suggest that the majority of UCDs that have elevated M/LV ratios could have formed monolithically with significant remnant-mass components that are centrally concentrated, while those with small M/LV values may be merged star cluster complexes.


2018 ◽  
Vol 14 (S344) ◽  
pp. 186-189
Author(s):  
P. Steyrleithner ◽  
G. Hensler ◽  
S. Recchi ◽  
S. Ploeckinger

AbstractIn recent years dedicated observations have uncovered star formation at extremely low rates in dwarf galaxies, tidal tails, ram-pressure stripped gas clouds, and the outskirts of galactic disks. At the same time, numerical simulations of galaxy evolution have advanced to higher spatial and mass resolutions, but have yet to account for the underfilling of the uppermost mass bins of stellar initial mass function (IMF) at low star-formation rates. In such situations, simulations may simply scale down the IMF, without realizing that this unrealistically results in fractions of massive stars, along with fractions of massive star feedback energy (e.g., radiation and SNII explosions). Not properly accounting for such parameters has consequences for the self-regulation of star formation, the energetics of galaxies, as well as for the evolution of chemical abundances. Here we present numerical simulations of dwarf galaxies with low star-formation rates allowing for two extreme cases of the IMF: a “filled” case with fractional massive stars vs. a truncated IMF, at which the IMF is built bottom-up until the gas reservoir allows the formation of a last single star at an uppermost mass. The aim of the study is to demonstrate the different effects on galaxy evolution with respect to self-regulation, feedback, and chemistry. The case of a stochastic sampled IMF is situated somewhere in between these extremes.


2019 ◽  
Vol 488 (2) ◽  
pp. 2970-2975 ◽  
Author(s):  
Michael Y Grudić ◽  
Philip F Hopkins

Abstract Most simulations of galaxies and massive giant molecular clouds (GMCs) cannot explicitly resolve the formation (or predict the main-sequence masses) of individual stars. So they must use some prescription for the amount of feedback from an assumed population of massive stars (e.g. sampling the initial mass function, IMF). We perform a methods study of simulations of a star-forming GMC with stellar feedback from UV radiation, varying only the prescription for determining the luminosity of each stellar mass element formed (according to different IMF sampling schemes). We show that different prescriptions can lead to widely varying (factor of ∼3) star formation efficiencies (on GMC scales) even though the average mass-to-light ratios agree. Discreteness of sources is important: radiative feedback from fewer, more-luminous sources has a greater effect for a given total luminosity. These differences can dominate over other, more widely recognized differences between similar literature GMC-scale studies (e.g. numerical methods, cloud initial conditions, presence of magnetic fields). Moreover the differences in these methods are not purely numerical: some make different implicit assumptions about the nature of massive star formation, and this remains deeply uncertain in star formation theory.


2020 ◽  
Vol 496 (4) ◽  
pp. 5072-5088 ◽  
Author(s):  
Dávid Guszejnov ◽  
Michael Y Grudić ◽  
Philip F Hopkins ◽  
Stella S R Offner ◽  
Claude-André Faucher-Giguère

ABSTRACT Understanding the evolution of self-gravitating, isothermal, magnetized gas is crucial for star formation, as these physical processes have been postulated to set the initial mass function (IMF). We present a suite of isothermal magnetohydrodynamic (MHD) simulations using the gizmo code that follow the formation of individual stars in giant molecular clouds (GMCs), spanning a range of Mach numbers found in observed GMCs ($\mathcal {M} \sim 10\!-\!50$). As in past works, the mean and median stellar masses are sensitive to numerical resolution, because they are sensitive to low-mass stars that contribute a vanishing fraction of the overall stellar mass. The mass-weighted median stellar mass M50 becomes insensitive to resolution once turbulent fragmentation is well resolved. Without imposing Larson-like scaling laws, our simulations find $M_\mathrm{50} \,\, \buildrel\propto \over \sim \,\,M_\mathrm{0} \mathcal {M}^{-3} \alpha _\mathrm{turb}\, \mathrm{SFE}^{1/3}$ for GMC mass M0, sonic Mach number $\mathcal {M}$, virial parameter αturb, and star formation efficiency SFE = M⋆/M0. This fit agrees well with previous IMF results from the ramses, orion2, and sphng codes. Although M50 has no significant dependence on the magnetic field strength at the cloud scale, MHD is necessary to prevent a fragmentation cascade that results in non-convergent stellar masses. For initial conditions and SFE similar to star-forming GMCs in our Galaxy, we predict M50 to be $\gt 20 \, \mathrm{M}_{\odot }$, an order of magnitude larger than observed ($\sim 2 \, \mathrm{M}_\odot$), together with an excess of brown dwarfs. Moreover, M50 is sensitive to initial cloud properties and evolves strongly in time within a given cloud, predicting much larger IMF variations than are observationally allowed. We conclude that physics beyond MHD turbulence and gravity are necessary ingredients for the IMF.


2016 ◽  
Vol 11 (S321) ◽  
pp. 99-101 ◽  
Author(s):  
Gerhard Hensler ◽  
Patrick Steyrleithner ◽  
Simone Recchi

AbstractDue to their low masses dwarf galaxies experience low star-formation rates resulting in stellar cluster masses insufficient to fill the initial mass function (IMF) to the uppermost mass. Numerical simulations usually do not account for the completeness of the IMF, but treat a filed IMF by numbers, masses, and stellar feedback by fractions. To ensure that only entire stars are formed, we consider an IMF filled from the lower-mass regime and truncated where at least one entire massive star is formed.By 3D simulations we investigate the effects of two possible IMFs on the evolution of dwarf galaxies: filled vs. truncated IMF. For the truncated IMF the star-formation self-regulation is suppressed, while the energy release by typeII supernovae is larger, both compared to the filled IMF. Moreover, the abundance ratios of particular elements yielded from massive and intermediate-mass stars differ significantly between the two IMF distributions.


2018 ◽  
Vol 620 ◽  
pp. A39 ◽  
Author(s):  
T. Jeřábková ◽  
A. Hasani Zonoozi ◽  
P. Kroupa ◽  
G. Beccari ◽  
Z. Yan ◽  
...  

The stellar initial mass function (IMF) is commonly assumed to be an invariant probability density distribution function of initial stellar masses. These initial stellar masses are generally represented by the canonical IMF, which is defined as the result of one star formation event in an embedded cluster. As a consequence, the galaxy-wide IMF (gwIMF) should also be invariant and of the same form as the canonical IMF; gwIMF is defined as the sum of the IMFs of all star-forming regions in which embedded clusters form and spawn the galactic field population of the galaxy. Recent observational and theoretical results challenge the hypothesis that the gwIMF is invariant. In order to study the possible reasons for this variation, it is useful to relate the observed IMF to the gwIMF. Starting with the IMF determined in resolved star clusters, we apply the IGIMF-theory to calculate a comprehensive grid of gwIMF models for metallicities, [Fe/H] ∈ (−3, 1), and galaxy-wide star formation rates (SFRs), SFR ∈ (10−5, 105) M⊙ yr−1. For a galaxy with metallicity [Fe/H] < 0 and SFR > 1 M⊙ yr−1, which is a common condition in the early Universe, we find that the gwIMF is both bottom light (relatively fewer low-mass stars) and top heavy (more massive stars), when compared to the canonical IMF. For a SFR < 1 M⊙ yr−1 the gwIMF becomes top light regardless of the metallicity. For metallicities [Fe/H] > 0 the gwIMF can become bottom heavy regardless of the SFR. The IGIMF models predict that massive elliptical galaxies should have formed with a gwIMF that is top heavy within the first few hundred Myr of the life of the galaxy and that it evolves into a bottom heavy gwIMF in the metal-enriched galactic centre. Using the gwIMF grids, we study the SFR−Hα relation and its dependency on metallicity and the SFR. We also study the correction factors to the Kennicutt SFRK − Hα relation and provide new fitting functions. Late-type dwarf galaxies show significantly higher SFRs with respect to Kennicutt SFRs, while star-forming massive galaxies have significantly lower SFRs than hitherto thought. This has implications for gas-consumption timescales and for the main sequence of galaxies. We explicitly discuss Leo P and ultra-faint dwarf galaxies.


2014 ◽  
Vol 2014 ◽  
pp. 1-30 ◽  
Author(s):  
Simone Recchi

In this review I give a summary of the state of the art for what concerns the chemo-dynamical numerical modelling of galaxies in general and of dwarf galaxies in particular. In particular, I focus my attention on (i) initial conditions, (ii) the equations to solve; (iii) the star formation process in galaxies, (iv) the initial mass function, (v) the chemical feedback, (vi) the mechanical feedback, (vii) the environmental effects. Moreover, some key results concerning the development of galactic winds in galaxies and the fate of heavy elements, freshly synthesised after an episode of star formation, have been reported. At the end of this review, I summarise the topics and physical processes, relevant to the evolution of galaxies, that in my opinion are not properly treated in modern computer simulations of galaxies and that deserve more attention in the future.


1993 ◽  
Vol 137 ◽  
pp. 795-797
Author(s):  
Ph. Podsiadlowski ◽  
N.M. Price

AbstractWe present a new model to explain stellar mass distributions in different stellar environments. In our model, the protostar phase is terminated, when the protostellar core embedded in a molecular clump experiences a collision with another star or protostellar clump, which ejects the protostellar core from its parent clump. Such dynamical interactions are necessarily important, if stars preferentially form in dense clusters. We show that, in a simple model, the initial mass function approaches a simple, asymptotic form, which strongly resembles observed mass functions. The model has important consequences for star formation in different environments. We also discuss the implications of the model for our understanding of pre-main-sequence stellar evolution.


Sign in / Sign up

Export Citation Format

Share Document