scholarly journals Kinematics and Dynamics of the Magellanic Clouds

1984 ◽  
Vol 108 ◽  
pp. 107-114
Author(s):  
K. C. Freeman

Why are the kinematics and dynamics of the Magellanic Clouds worth studying ? Some of the reasons are: 1.The Clouds are the closest examples of Magellanic systems. These asymmetric systems give some interesting dynamical problems. Because the Clouds are so close, a unique amount of information can be obtained on the kinematics of objects of all ages. This should be very helpful for understanding the dynamics.2.The Clouds and the Galaxy are interacting. This produces complex kinematics of the gas in and between the Clouds, and also the Magellanic Stream. Again, very detailed information can be derived. We would like to know enough about the gas dynamics of interacting galaxies, to be able to explain the kinematics produced by this interaction.3.The interaction will affect the star formation and chemical evolution in the Clouds. As new results are obtained on the star formation history and the chemical evolution, it is important to follow in parallel the dynamical history of the system, to see if the dynamics, star formation and chemical evolution can be tied together.

1993 ◽  
Vol 155 ◽  
pp. 557-566
Author(s):  
Joachim Köppen

For a first interpretation of the comparison of observational data, the crude “Simple Model” of chemical evolution is quite useful. Since it has well been described in the literature (e.g. Pagel and Patchett 1975, Tinsley 1980), let us here just review the assumptions and whether they are satisfied: 1.The galaxy is a closed system, with no exchange of matter with its surroundings: For the solar neighbourhood this probably is not true (the infamous Gdwarf-“problem”, Pagel 1989b). For the Magellanic Clouds this is most certainly wrong, because of the presence of the Inter-Cloud Region and the Magellanic Stream, and evidence for interaction with each other and the Galaxy as well (cf. e.g. Westerlund 1990).2.It initially consists entirely of gas (without loss of generality of primordial composition): This is good approximation also for models with gas infall, as long as the infall occurs with a time scale shorter than the star formation time scale.3.The metal production of the average stellar generation (the yield y) is constant with time: Initially, it is reasonable to make this assumption. For tables of the oxygen yield see Koppen and Arimoto (1991).4.The metal rich gas ejected by the stars is completely mixed with the ambient gas. To neglect the finite stellar life times (“instantaneous recycling approximation”) is appropriate for elements synthesized in stars whose life time is much shorter than the star formation time scale, such as oxygen, neon, sulphur, and argon.5.The gas is well mixed at all times: We don't know. The dispersion of H II region abundances may give an indication. In the Magellanic Clouds Dufour (1984) finds quite a low value (±0.08 dex for oyxgen).


1999 ◽  
Vol 190 ◽  
pp. 470-472
Author(s):  
Eva K. Grebel ◽  
Wolfgang Brandner

A new age calibration of Cepheids and supergiants is used to study the large-scale recent star formation history of the LMC and the SMC. We find evidence for migration of star formation along the LMC bar as well as for the existence of long-lived (≈ 200 Myr) extended star-forming features.


2008 ◽  
Vol 4 (S256) ◽  
pp. 281-286
Author(s):  
Carme Gallart ◽  
Ingrid Meschin ◽  
Antonio Aparicio ◽  
Peter B. Stetson ◽  
Sebastián L. Hidalgo

AbstractBased on the quantitative analysis of a set of wide-field color—magnitude diagrams reaching the old main sequence-turnoffs, we present new LMC star-formation histories, and their variation with galactocentric distance. Some coherent features are found, together with systematic variations of the star-formation history among the three fields analyzed. We find two main episodes of star formation in all three fields, from 1 to 4 and 7 to 13 Gyr ago, with relatively low star formation around ≃ 4–7 Gyr ago. The youngest age in each field gradually increases with galactocentric radius; in the innermost field, LMC 0514–6503, an additional star formation event younger than 1 Gyr is detected, with star formation declining, however, in the last ≃ 200 Myr. The population is found to be older on average toward the outer part of the galaxy, although star formation in all fields seems to have started around 13 Gyr ago.


2014 ◽  
Vol 10 (S309) ◽  
pp. 99-104
Author(s):  
R. M. González Delgado ◽  
R. Cid Fernandes ◽  
R. García-Benito ◽  
E. Pérez ◽  
A. L. de Amorim ◽  
...  

AbstractWe resolve spatially the star formation history of 300 nearby galaxies from the CALIFA integral field survey to investigate: a) the radial structure and gradients of the present stellar populations properties as a function of the Hubble type; and b) the role that plays the galaxy stellar mass and stellar mass surface density in governing the star formation history and metallicity enrichment of spheroids and the disks of galaxies. We apply the fossil record method based on spectral synthesis techniques to recover spatially and temporally resolved maps of stellar population properties of spheroids and spirals with galaxy mass from 109 to 7×1011 M⊙. The individual radial profiles of the stellar mass surface density (μ⋆), stellar extinction (AV), luminosity weighted ages (〈logage〉L), and mass weighted metallicity (〈log Z/Z⊙〉M) are stacked in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc and Sd). All these properties show negative gradients as a sight of the inside-out growth of massive galaxies. However, the gradients depend on the Hubble type in different ways. For the same galaxy mass, E and S0 galaxies show the largest inner gradients in μ⋆; and Andromeda-like galaxies (Sb with log M⋆ (M⊙) ∼ 11) show the largest inner age and metallicity gradients. In average, spiral galaxies have a stellar metallicity gradient ∼ −0.1 dex per half-light radius, in agreement with the value estimated for the ionized gas oxygen abundance gradient by CALIFA. A global (M⋆-driven) and local (μ⋆-driven) stellar metallicity relation are derived. We find that in disks, the stellar mass surface density regulates the stellar metallicity; in spheroids, the galaxy stellar mass dominates the physics of star formation and chemical enrichment.


1999 ◽  
Vol 186 ◽  
pp. 202-202
Author(s):  
Yasuhiro Shioya ◽  
Kenji Bekki

We investigate the nature of stellar populations of major galaxy mergers between late-type spirals considerably abundant in interstellar medium by performing numerical simulations designed to solve both the dynamical and chemical evolution in a self-consistent manner. We particularly consider that the star formation history of galaxy mergers is a crucial determinant for the nature of stellar populations of merger remnants, and therefore investigate how the difference in star formation history between galaxy mergers affects the chemical evolution of galaxy mergers.


1999 ◽  
Vol 190 ◽  
pp. 464-465
Author(s):  
Paolo Battinelli ◽  
Serge Demers

Recently, Demers & Battinelli (1998) have shown that the young intercloud stellar aggregates are 10 to 25 Myr old, thus younger than the estimated age (200 Myr) of the last close LMC–SMC encounter (see, e.g., Irwin et al. 1996). These stellar aggregates show a distance gradient that confirms the existence of a “link” between the two Magellanic Clouds. Numerous blue stars have been detected by Demers & Irwin (1991) east of the aggregate ICA76 (the closest to the LMC). These blue stars, that extend to the southwestern periphery of the LMC, may be an aftermath of the close LMC–SMC encounter. Our present study is aimed to survey this SW part of the LMC and to determine the origin of these blue stars.


2019 ◽  
Vol 487 (4) ◽  
pp. 5862-5873 ◽  
Author(s):  
M Bettinelli ◽  
S L Hidalgo ◽  
S Cassisi ◽  
A Aparicio ◽  
G Piotto ◽  
...  

ABSTRACT We present the star formation history (SFH) of the Sculptor dwarf spheroidal galaxy based on deep g, r photometry taken with Dark Energy Camera at the Blanco telescope, focusing our analysis on the central region of the galaxy extended up to ∼3 core radii. We have investigated how the SFH changes radially, subdividing the sampled area into four regions, and have detected a clear trend of star formation. All the SFHs show a single episode of star formation, with the innermost region presenting a longer period of star formation of ∼1.5 Gyr and for the outermost region the main period of star formation is confined to ∼0.5 Gyr. We observe a gradient in the mean age which is found to increase going towards the outer regions. These results suggest that Sculptor continued forming stars after the reionization epoch in its central part, while in the peripheral region, the majority of stars probably formed during the reionization epoch and soon after its end. From our analysis, Sculptor cannot be considered strictly as a fossil of the reionization epoch.


2009 ◽  
Vol 5 (S268) ◽  
pp. 483-488
Author(s):  
Rodolfo Smiljanic ◽  
L. Pasquini ◽  
P. Bonifacio ◽  
D. Galli ◽  
B. Barbuy ◽  
...  

AbstractThe single stable isotope of beryllium is a pure product of cosmic-ray spallation in the ISM. Assuming that the cosmic-rays are globally transported across the Galaxy, the beryllium production should be a widespread process and its abundance should be roughly homogeneous in the early-Galaxy at a given time. Thus, it could be useful as a tracer of time. In an investigation of the use of Be as a cosmochronometer and of its evolution in the Galaxy, we found evidence that in a log(Be/H) vs. [α/Fe] diagram the halo stars separate into two components. One is consistent with predictions of evolutionary models while the other is chemically indistinguishable from the thick-disk stars. This is interpreted as a difference in the star formation history of the two components and suggests that the local halo is not a single uniform population where a clear age-metallicity relation can be defined. We also found evidence that the star formation rate was lower in the outer regions of the thick disk, pointing towards an inside-out formation.


Sign in / Sign up

Export Citation Format

Share Document