scholarly journals Regularity of the Large-Scale Structure of the Universe

1999 ◽  
Vol 183 ◽  
pp. 169-177
Author(s):  
J. Einasto

The observed structure of the Universe is hierarchical. Galaxies and clusters of galaxies are concentrated within elongated filamentary chains of various richness. High-density regions of the Universe form superclusters consisting of one or several clusters of galaxies and chains of galaxies surrounding and joining clusters. The space between filaments is void of galaxies. Superclusters and voids form a continuous network of alternating high- and low-density regions in the Universe.

1992 ◽  
Vol 9 ◽  
pp. 671-680
Author(s):  
Neta A. Bahcall

AbstractA consistent picture of large-scale structure appears to be emerging from different types of observations including the spatial distribution of galaxies, clusters of galaxies, narrow pencil-beam surveys, and quasars. I describe these observations below. A network of large-scale superclusters, up to ~ 150 Mpc in scale, is suggested. The supercluster network surrounds low-density regions of similar scales, suggesting a “cellular” structure of the universe. (Ho = 100 km /s/ Mpc is used).


1987 ◽  
Vol 124 ◽  
pp. 335-348
Author(s):  
Neta A. Bahcall

The evidence for the existence of very large scale structures, ∼ 100h−1Mpc in size, as derived from the spatial distribution of clusters of galaxies is summarized. Detection of a ∼ 2000 kms−1 elongation in the redshift direction in the distribution of the clusters is also described. Possible causes of the effect are peculiar velocities of clusters on scales of 10–100h−1Mpc and geometrical elongation of superclusters. If the effect is entirely due to the peculiar velocities of clusters, then superclusters have masses of order 1016.5M⊙ and may contain a larger amount of dark matter than previously anticipated.


1977 ◽  
Vol 3 (2) ◽  
pp. 140-142 ◽  
Author(s):  
B. M. Lewis

Rich clusters of galaxies are a common feature of the large-scale structure of the Universe. Those studied so far, show striking regularities with (a)a smooth radial gradient of number density.(b)’isothermal’ distributions, which according to Bahcall (1975) have a scatter of only ±15% in the size of their characteristic core radii.(c)their limiting structural diameters are ~50 Mpc (cf. Abell, 1975), if they are identified with superclusters.(d)the magnitude of the velocity dispersion about their centres is generally 600-1000 km s-1, and the velocities are cpnsistent with a gaussian distribution (Yahil and Vidal, 1976; also Faber and Dressier, 1976).(e)The extreme velocities are generally within ±3000 km s-1, and for Coma are ∼2400 km s-1 (Tifft and Gregory, 1976).(f)elliptical galaxies tend to predominate near the centre, spirals in the surrounding loose groups.


1980 ◽  
Vol 5 ◽  
pp. 699-714 ◽  
Author(s):  
Neta A. Bahcall

AbstractClusters and groups of galaxies contain the majority of galaxies in the universe. The rich clusters, while less numerous than the many poor groups, are the densest and largest systems known, and can be easily recognized and studied even at relatively large distances. Their study is important for understanding the formation and evolution of clusters and galaxies, and for a determination of the large-scale structure in the universe.


1999 ◽  
Vol 183 ◽  
pp. 256-256
Author(s):  
U. Lindner ◽  
K.J. Fricke ◽  
J. Einasto ◽  
M. Einasto

We present an investigation of the galaxy distribution in the huge underdense region between the Hercules, Coma and Local Superclusters, the so-called Northern Local Void (NLV), using void statistics (for details refer to Lindner et al. this Volume). Reshift data for galaxies and poor clusters of galaxies are available in low and high density regions as well. Samples of galaxies with different morphological type and various luminosity limits have been studied separately and void catalogues have been compiled from three different luminosity limited galaxy samples for the first time. Voids have been found using the empty sphere method which has the potential to detect and describe subtle structures in the galaxy distribution. Our approach is complementary to most other methods usually used in Large–Scale Structure studies.


2008 ◽  
Vol 4 (T27A) ◽  
pp. 283-285
Author(s):  
Sadanori Okamura ◽  
Elaine Sadler ◽  
Francesco Bertola ◽  
Mark Birkinshaw ◽  
Françoise Combes ◽  
...  

Division VIII provides a focus for astronomers studying a wide range of problems related to galaxies and cosmology. Objects of the study include individual galaxies, groups and clusters of galaxies, large scale structure, comic microwave background radiation and the universe itself. Approaches are diverse from observational one to theoretical one including computer simulations.


1988 ◽  
Vol 130 ◽  
pp. 203-206
Author(s):  
A. Mészáros ◽  
P. Mészáros

At present there are in use three different models to characterize the large scale structure of the universe. The clustering model (Soneira and Peebles, 1978) assumes that the superclusters are high density islands in a low density sea. The void model (Joeveer and Einasto, 1978), on the other hand, assumes that the voids are isolated low density islands in a high density sea. The sponge model (Gott et al., 1986) assumes that high and low density regions occupy equal volumes, and that the high and low density regions are both connected. The straightforward way to decide among these three models is the direct investigation of the spatial distribution of the galaxies. Nevertheless, there is an essentially different observational method that may also be useful to obtain some information about these models. The X-ray background radiation (XRB) is due either to the bremsstrahlung of hot intergalactic gas, or to the sum of the radiation of unresolved discrete sources (E.G. Boldt 1987). If the “discrete” origin is correct, then obviously the actual number of sources, and hence their total intensity, may vary from one part of the sky to another. Thus, in this case one has the possibility to estimate the number of sources in a given volume from the observed isotropy of the XRB. For example, Hamilton and Helfand (1987) suggest that the number of sources must be larger than 5000/(degree)2. Any such estimate needs several assumptions. In the previous works one usually assumed that the sources were distributed completely randomly; see, e.g. Fabian (1972). Nevertheless, if the XRB is generated by young galaxies (Bookbinder et al. 1980), it is not excluded that the sources of the SRB are also grouped similarly to galaxies. Because in this case the distribution of sources of the XRB is not completely random, one may expect a different type of fluctuations in the intensity of the XRB. In addition, since the grouping may be quite different for the three structure models, the expected fluctuations may also be different. There is a chance to discriminate among them using the observed isotropy of XRB. The basic observational datum concerning the isotropy of the XRB is well-known: the fluctuations in the intensity are smaller than 3%, if 3° × 3° pixels are used Shafer (1983).


1978 ◽  
Vol 79 ◽  
pp. 423-425 ◽  
Author(s):  
A. G. Doroshkevich ◽  
E. M. Saar ◽  
S. F. Shandarin

We give a short review of the general picture and main features of the formation of galaxies and clusters of galaxies on the basis of the adiabatic theory. Detailed discussions of these questions are published in references 1–6. Some related problems of the formation and development of large scale structure in the Universe according to the same theory are considered in Zeldovich's report.


1982 ◽  
Vol 64 ◽  
pp. 261-263
Author(s):  
M. Kalinkov ◽  
I. Kuneva ◽  
K. Stavrev

To study the large scale structure of the Universe, we started several years ago the compilation of a new type of catalogue – a metacatalogue of optical extragalactic objects, on magnetic tape. This catalogue may be regarded to some extent as a data bank but it will also include characteristics, reduced to homogeneous systems. The Metacatalogue will contain information for galaxies, clusters of galaxies, counts of galaxies and bibliographical data. Until now some files for individual catalogues and lists have been created, which may be used also before their merging into the Metacatalogue.


Sign in / Sign up

Export Citation Format

Share Document