scholarly journals The Dynamical Evolution of Young Open Clusters

1985 ◽  
Vol 113 ◽  
pp. 463-465
Author(s):  
Michael Margulis ◽  
Charles J. Lada ◽  
David Dearborn

Using numerical N-body calculations we have simulated the dynamical evolution of young clusters as they emerge from molecular clouds. Starting with initially virialized systems of stars and gas we follow the evolution of these systems from the time immediately after the stars have formed in a cloud until a time long after all the residual star-forming gas has been dispersed. In the models stellar systems were composed of 50, and in some cases 100, stars and these stars were represented as point masses. The stellar mass function followed a power law with an index of −2.5 and ranged over two decades in mass (Scalo 1978). Gas in the models was represented as an extra term in the gravitational potential function governing stellar motions, and was set to follow a density distribution corresponding to a spherically symmetric Plummer potential function (Plummer 1911). Starting with these initial conditions, stellar motions were then integrated and evolution of each stellar system was followed as gas was dispersed from the vicinity of the stars as a function of time.

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Harmeen Kaur ◽  
Saurabh Sharma ◽  
Alok K. Durgapal

NGC 6910 is located in a Cygnus X region, which is a ∼10◦ complex of actively star forming molecular clouds and young clusters, located at a distance of about 1.7 kpc (Reipurth & Schneider 2008). Open clusters possess many favorable characteristics for initial mass function (IMF) studies. The observed mass function of a star cluster can in principle be determined from the observed luminosity function (LF) using theoretical stellar evolutionary models. Here, we are presenting our initial results related to structure parameters, extinction, distance and mass function of open cluster NGC 6910 based on the deep and wide field mosaic images taken from 1.0m Sampurnand telescope of ARIES, India.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Harmeen Kaur ◽  
Saurabh Sharma ◽  
Alok K. Durgapal

NGC 6910 is located in a Cygnus X region, which is a ∼10◦ complex of actively star forming molecular clouds and young clusters, located at a distance of about 1.7 kpc (Reipurth & Schneider 2008). Open clusters possess many favorable characteristics for initial mass function (IMF) studies. The observed mass function of a star cluster can in principle be determined from the observed luminosity function (LF) using theoretical stellar evolutionary models. Here, we are presenting our initial results related to structure parameters, extinction, distance and mass function of open cluster NGC 6910 based on the deep and wide field mosaic images taken from 1.0m Sampurnand telescope of ARIES, India


2019 ◽  
Vol 14 (S351) ◽  
pp. 216-219
Author(s):  
Steven Rieder ◽  
Clare Dobbs ◽  
Thomas Bending

AbstractWe present a model for hydrodynamic + N-body simulations of star cluster formation and evolution using AMUSE. Our model includes gas dynamics, star formation in regions of dense gas, stellar evolution and a galactic tidal spiral potential, thus incorporating most of the processes that play a role in the evolution of star clusters.We test our model on initial conditions of two colliding molecular clouds as well as a section of a spiral arm from a previous galaxy simulation.


2020 ◽  
Vol 498 (4) ◽  
pp. 5972-5989
Author(s):  
D Nardiello

ABSTRACT Young associations in star-forming regions are stellar systems that allow us to understand the mechanisms that characterize the stars in their early life and what happens around them. In particular, the analysis of the discs and of the exoplanets around young stars allows us to know the key processes that prevail in their evolution and understand the properties of the exoplanets orbiting older stars. The Transiting Exoplanet Survey Satellite mission is giving us the opportunity to extract and analyse the light curves of association members with high accuracy, but the crowding that affects these regions makes difficult the light curve extraction. In the PATHOS project, cutting-edge tools are used to extract high-precision light curves and identify variable stars and transiting exoplanets in open clusters and associations. In this work, I analysed the light curves of stars in five young (≲10 Myr) associations, searching for variables and candidate exoplanets. Using the rotational periods of the association members, I constrained the ages of the five stellar systems (∼2–10 Myr). I searched for dippers, and I investigated the properties of the dust that forms the circumstellar discs. Finally, I searched for transiting signals, finding six strong candidate exoplanets. No candidates with radius RP ≲ 0.9 RJ have been detected, in agreement with the expectations. The frequency of giant planets resulted to be ∼2–3 per cent, higher than that expected for field stars (≲ 1 per cent); the low statistic makes this conclusion not strong, and new investigations on young objects are mandatory to confirm this result.


1957 ◽  
Vol 3 ◽  
pp. 111-115 ◽  
Author(s):  
B. V. Kukarkin

The possibility of discovering phenomenologically similar objects either located in different stellar systems, or in totally different (according to their origin and age) parts of some complex stellar system (as, for instance, our Galaxy) is of extreme importance. The detection of such objects permits us to confirm that, in spite of different initial conditions and evolutionary paths, stars of quite different origin pass in the course of their evolution through the same stages.


1986 ◽  
Vol 7 ◽  
pp. 481-488 ◽  
Author(s):  
Robert D. Mathieu

A young cluster or association bears the imprint of the conditions at its birth for perhaps ten million years, after which the initial conditions are lost to either dilution in the galactic field or erasure by orbital mixing and stellar encounters. In its youngest years, however, the dynamical state of the system can provide valuable information concerning the structure and energetics of the parent gas, the star-formation efficiency and the star-formation process itself. This short review discusses recent theoretical and observational progress in the study of the very youngest of stellar systems.


2019 ◽  
Vol 488 (2) ◽  
pp. 2970-2975 ◽  
Author(s):  
Michael Y Grudić ◽  
Philip F Hopkins

Abstract Most simulations of galaxies and massive giant molecular clouds (GMCs) cannot explicitly resolve the formation (or predict the main-sequence masses) of individual stars. So they must use some prescription for the amount of feedback from an assumed population of massive stars (e.g. sampling the initial mass function, IMF). We perform a methods study of simulations of a star-forming GMC with stellar feedback from UV radiation, varying only the prescription for determining the luminosity of each stellar mass element formed (according to different IMF sampling schemes). We show that different prescriptions can lead to widely varying (factor of ∼3) star formation efficiencies (on GMC scales) even though the average mass-to-light ratios agree. Discreteness of sources is important: radiative feedback from fewer, more-luminous sources has a greater effect for a given total luminosity. These differences can dominate over other, more widely recognized differences between similar literature GMC-scale studies (e.g. numerical methods, cloud initial conditions, presence of magnetic fields). Moreover the differences in these methods are not purely numerical: some make different implicit assumptions about the nature of massive star formation, and this remains deeply uncertain in star formation theory.


2010 ◽  
Vol 6 (S270) ◽  
pp. 511-519 ◽  
Author(s):  
Alyssa A. Goodman

AbstractWe review an approach to observation-theory comparisons we call “Taste-Testing.” In this approach, synthetic observations are made of numerical simulations, and then both real and synthetic observations are “tasted” (compared) using a variety of statistical tests. We first lay out arguments for bringing theory to observational space rather than observations to theory space. Next, we explain that generating synthetic observations is only a step along the way to the quantitative, statistical, taste tests that offer the most insight. We offer a set of examples focused on polarimetry, scattering and emission by dust, and spectral-line mapping in star-forming regions. We conclude with a discussion of the connection between statistical tests used to date and the physics we seek to understand. In particular, we suggest that the “lognormal” nature of molecular clouds can be created by the interaction of many random processes, as can the lognormal nature of the IMF, so that the fact that both the “Clump Mass Function” (CMF) and IMF appear lognormal does not necessarily imply a direct relationship between them.


1995 ◽  
Vol 164 ◽  
pp. 175-180
Author(s):  
Abhijit Saha

The aim of the study of the populations in a stellar system is to understand and be able to describe the stellar content of a system in terms of physical parameters such as the age, star formation history, chemical enrichment history, initial mass function (IMF), environment, and dynamical history of the system. This is done given an understanding of stellar evolution and the ability to express the outcome in “observer parameters”, particularly a color-magnitude diagram (CMD), kinematics, and metallicity. From this perspective, the simplest systems are the galactic clusters and the globular clusters, where all the component stars are coeval and of the same metallicity. The current state of knowledge for these are discussed by others in this conference. We proceed to the next level of complexity (where metallicities are not necessarily all the same, and nor are the stars all coeval), and try to decompose their stellar content, particularly in terms of star formation rate and metallicity. In this regard the two classes of objects that come to mind are the dwarf spheroidals, and the dwarf irregulars. Both these classes of objects are more massive than the open clusters and globular clusters, and show evidence of complexities in their star formation histories, without being so convolved as to make such a study intractable. As we shall see, recent studies along these lines have presented some puzzling problems. Moreover, these are the smallest independent galaxies, and the study of star formation in these is likely to shed light on the history and formation of larger and more complex galaxies.


Author(s):  
Douglas C Heggie ◽  
Philip G Breen ◽  
Anna Lisa Varri

Abstract Spherical stellar systems such as King models, in which the distribution function is a decreasing function of energy and depends on no other invariant, are stable in the sense of collisionless dynamics. But Weinberg showed, by a clever application of the matrix method of linear stability, that they may be nearly unstable, in the sense of possessing weakly damped modes of oscillation. He also demonstrated the presence of such a mode in an N-body model by endowing it with initial conditions generated from his perturbative solution. In the present paper we provide evidence for the presence of this same mode in N-body simulations of the King W0 = 5 model, in which the initial conditions are generated by the usual Monte Carlo sampling of the King distribution function. It is shown that the oscillation of the density centre correlates with variations in the structure of the system out to a radius of about 1 virial radius, but anticorrelates with variations beyond that radius. Though the oscillations appear to be continually reexcited (presumably by the motions of the particles) we show by calculation of power spectra that Weinberg’s estimate of the period (strictly, 2π divided by the real part of the eigenfrequency) lies within the range where the power is largest. In addition, however, the power spectrum displays another very prominent feature at shorter periods, around 5 crossing times.


Sign in / Sign up

Export Citation Format

Share Document