scholarly journals Storage of Magnetic Flux in the Overshoot Region

1993 ◽  
Vol 157 ◽  
pp. 41-44
Author(s):  
F. Moreno-Insertis ◽  
M. Schüssler ◽  
A. Ferriz-Mas

The combined action of the subadiabatic ambient stratification in the overshoot region below the convection zone and the inertial forces associated with the solar rotation is shown to lead to the suppression of the escape of magnetic flux in the form of toroidal flux tubes both toward the surface and toward higher latitudes. We show that a flux ring initially in thermal equilibrium with its environment and rotating with the ambient angular velocity moves radially and latitudinally towards an equilibrium configuration of lower internal temperature and larger internal rotation rate with respect to the surrounding, field-free gas. We conclude that flux rings with B≲ 105 G can be kept within the overshoot region if the superadiabaticity is sufficiently negative, i.e. δ = ▿ – ▿ad≲–10−5; below that field strength the poleward drift is also reduced to a latitudinal oscillation of moderate amplitude, δθ ≲ 20 deg. Flux rings with significantly larger field strength cannot be kept in the equatorial parts of the overshoot region: their equilibrium configuration is located at high latitudes far outside the solar activity belts and, at any rate, requires unrealistic values of δ.

1993 ◽  
Vol 157 ◽  
pp. 27-39
Author(s):  
M. Schüssler

The structure of solar surface magnetic fields, the way they erupt from the the convection zone below, and processes like flux expulsion and fragmentation instabilities support the view that magnetic flux in a stellar convection zone is in an intermittent, fragmented state which can be described as an ensemble of magnetic flux tubes. Depending on size and field strength, the dynamics of magnetic flux tubes can strongly differ from the behavior of a passive, diffuse field which is often assumed in conventional mean-field dynamo theory. Observed properties of active regions like emergence in low latitudes, Hale's polarity rules, tilt angles, and the process of sunspot formation from smaller fragments, together with theoretical considerations of the dynamics of buoyant flux tubes indicate that the magnetic structures which erupt in an emerging active region are not passive to convection and originate in a source region (presumably an overshoot layer below the convection zone proper) with a field strength of at least 105 G, far beyond the equipartition field strength with respect to convective flows. We discuss the consequences of such a situation for dynamo theory of the solar cycle and consider the possibility of dynamo models on the basis of flux tubes. A simple, illustrative example of a flux tube dynamo is presented.


1996 ◽  
Vol 176 ◽  
pp. 269-288
Author(s):  
M. Schüssler

A theoretical study of storage, instability and rise of magnetic flux tubes in the outer convection zone of a cool star is presented. Special emphasis is laid on their emergence latitudes at the surface of magnetically active stars. We apply the ‘solar paradigm’ and assume toroidal magnetic flux tubes to be stored in force equilibrium within the overshoot layer underneath the convection zone. A non-axisymmetric (undulatory) instability leads to the formation of flux loops, which rise through the convection zone and emerge at the surface to form bipolar magnetic regions and starspots. Our approach combines the analytical determination of the linear stability properties of flux tubes with numerical simulations of the nonlinear evolution of the instability and the rise of magnetic flux tubes through the convection zone. It is found that for sufficiently rapidly rotating stars the magnetic flux emerges at high latitudes since the Coriolis force leads to a poleward deflection of rising flux loops. The latitude distribution of the emerging flux is determined for a number of stellar models along the evolutionary sequence of a star with one solar mass, from the pre-main sequence evolution up to the giant phase. Rapid rotation and deep convection zones favour flux emergence in high latitudes. Starspots right at the stellar (rotational) poles form either directly by flux eruption from small stellar cores (as for T Tauri stars or giants) or by a poleward slip of the sub-surface part of the flux tube after flux emergence in mid latitudes. The latter process explains the simultaneous existence of polar spots and spots at intermediate latitudes as observed on some stars.


2004 ◽  
Vol 219 ◽  
pp. 546-551
Author(s):  
T. Granzer ◽  
K. G. Strassmeier

We model thin magnetic flux tubes as they rise from the bottom of a stellar convection zone to the photosphere. On emergence they form active regions, i.e. star spots. This model was very successfully applied to the solar case, where the simulations where in agreement with the butterfly diagram, Joy's law, and Hale's law. We propose the use of a similar model to describe stellar activity in the more extreme form found on active stars. A comparison between Doppler-images of well-observed pre-MS stars and a theoretically derived probability of star-spot formation as a function of latitude is presented.


1990 ◽  
Vol 142 ◽  
pp. 60-61
Author(s):  
Sydney D'Silva ◽  
Arnab Rai Choudhuri

Working under the hypothesis that magnetic flux in the sun is generated at the bottom of the convection zone, Choudhuri and Gilman (1987; Astrophys. J. 316, 788) found that a magnetic flux tube symmetric around the rotation axis, when released at the bottom of the convection zone, gets deflected by the Coriolis force and tends to move parallel to the rotation axis as it rises in the convection zone. As a result, all the flux emerges at rather high latitudes and the flux observed at the typical sunspot latitudes remains unexplained. Choudhuri(1989; Solar Physics, in press) finds that non-axisymmetric perturbations too cannot subdue the Coriolis force. In this paper, we no longer treat the convection zone to be passive as in the previous papers, but we consider the role of turbulence in the convection zone in inhibiting the Coriolis force. The interaction of the flux tubes with the turbulence is treated in a phenomenological way as follows: (1) Large scale turbulence on the scale of giant cells can physically drag the tubes outwards, thus pulling the flux towards lower latitudes by dominating over the Coriolis force. (2) Small scale turbulence of the size of the tubes can exchange angular momentum with the tube, thus suppressing the growth of the Coriolis force and making the tubes emerge at lower latitudes. Numerical simulations show that the giant cells can drag the tubes and make them emerge at lower latitudes only if the velocities within the giant cells are unrealistically large or if the radii of the flux tubes are as small as 10 km. However, small scale turbulence can successfully suppress the growth of the Coriolis force if the tubes have radii smaller than about 300 km which may not be unreasonable. Such flux tubes can then emerge at low latitudes where sunspots are seen.


1998 ◽  
Vol 505 (1) ◽  
pp. L59-L63 ◽  
Author(s):  
Y. Fan ◽  
E. G. Zweibel ◽  
M. G. Linton ◽  
G. H. Fisher

1993 ◽  
Vol 157 ◽  
pp. 45-48
Author(s):  
A. Ferriz-Mas ◽  
M. Schüssler

We consider the linear stability of a toroidal flux tube lying in the equatorial plane of a differentially rotating star and investigate its dependence on superadiabaticity, magnetic field strength, and gradient of angular velocity.


Sign in / Sign up

Export Citation Format

Share Document