What the galaxies of the Local Group tell us about massive star evolution

1999 ◽  
Vol 193 ◽  
pp. 429-440
Author(s):  
Philip Massey

We consider what we've learned about massive star evolution from observations of the resolved stellar content of Local Group galaxies. Studies of mixed-age (galaxy-wide) and coeval (single associations) populations reveal much about massive star evolution, and how it is controlled by metallicity, demonstrating the ‘Conti scenario’ in action! The number of WC stars to WN stars increases with increasing metallicity, as expected: in regions of higher metallicity stars of somewhat lower luminosity can evolve all the way to the WC stage. The exception is the starburst galaxy IC 10, for which I speculate that the IMF may be weighted towards high mass stars. The highest luminosity red supergiants are lacking in galaxies of higher metallicity, suggesting that the stars that would have become these RSGs are spending more of their time as WRs. The presence of luminous RSGs is highly correlated with the presence of WC and WN stars in OB associations, suggesting that many massive stars evolve through both a RSG and WR stage. The relative number of RSGs and WRs does decrease strongly with increasing metallicity, again consistent with higher metallicity systems leading to increased time in the WR phase. The various WC subclasses appear to be the result of the influence of metallicity on stellar wind structure in these stars, and are not due to to differences in mass or luminosity. Data on the field population in the Magellanic Clouds suggest that stars more massive than 30 become WRs in the LMC, while the limit may be more like 50 in the SMC, again as expected. Studies of the turn-off masses in clusters and associations in the MCs and Milky Way are nearing completion, while investigations in the more distant galaxies of the Local Group are just getting underway. For the LMC we find the following: WNE stars come from a large mass range of progenitor (30–100 ), and have very large (negative) bolometric corrections (−6 to −8 mag). The Ofpe/WN9 stars seem to come from lower mass progenitor (20–30 ), and have more modest BCs (−1 to −3 mag). WC stars come from stars with masses > 60–70 , and have BCs of −3 to −4 mag. Both ‘B2I+WN3’ systems and LBV stars like S Doradus are found only in clusters containing very high turn off masses (>70–90 ).

1999 ◽  
Vol 192 ◽  
pp. 291-303 ◽  
Author(s):  
André Maeder

Local Group galaxies allow us to test some properties of massive star evolution which are inaccessible in our Galaxy, in particular the effects of different metallicities. Thus, after showing that we still do not know the exact process by which massive stars are formed, we examine the differences in the distributions of O-stars, blue and red supergiants and WR stars in the Local Group. The number ratios WR/O and WN/WC are well accounted for by stellar models in which the mass-loss rates depend on the metallicity, Z, as predicted by stellar wind theories. The number ratio of red supergiants to WR stars is growing for decreasing Z. Although this behaviour is qualitatively well explained, the models need some extra mixing to fit the observational data. The same is true for the explanation of the He- and N-excesses in O, B and A supergiants. Rotation and related mixing processes certainly play a major role in massive star evolution. The relative number of Be-stars is higher at lower Z, which suggests that rotation is faster, also with more mixing, in small, irregular low-metallicity galaxies.


2003 ◽  
Vol 212 ◽  
pp. 38-46
Author(s):  
Roberta M. Humphreys

Current observations of the S Dor/LBVs and candidates and the implications for their important role in massive star evolution are reviewed. Recent observations of the cool hypergiants are altering our ideas about their evolutionary state, their atmospheres and winds, and the possible mechanisms for their asymmetric high mass loss episodes which may involve surface activity and magnetic fields. Recent results for IRC+10420, ρ Cas and VY CMa are highlighted. S Dor/LBVs in eruption, and the cool hypergiants in their high mass loss phases with their optically thick winds are not what their apparent spectra and temperatures imply; they are then ‘impostors’ on the H-R diagram. The importance of the very most massive stars, like η Carinae and the ‘supernovae impostors’ are also discussed.


1984 ◽  
Vol 105 ◽  
pp. 279-297 ◽  
Author(s):  
Roberta M. Humphreys

In this review I will primarily be discussing the observational data relevant to understanding the process of stellar evolution in galaxies of different types. This discussion will focus on the stellar content of the nearer galaxies; those galaxies in which the brightest individual stars are resolved and can be observed.


2014 ◽  
Vol 9 (S307) ◽  
pp. 92-93
Author(s):  
N. Britavskiy ◽  
A. Z. Bonanos ◽  
A. Mehner

AbstractWe present the first systematic survey of dusty massive stars (RSGs, LBVs, sgB[e]) in nearby galaxies, with the goal of understanding their importance in massive star evolution. Using the fact that these stars are bright in mid-infrared colors due to dust, we provide a technique for selecting and identifying dusty evolved stars based on the results of Bonanos et al. (2009, 2010), Britavskiy et al. (2014), and archival Spitzer/IRAC photometry. We present the results of our spectroscopic follow-up of luminous infrared sources in the Local Group dwarf irregular galaxies: Pegasus, Phoenix, Sextans A and WLM. The survey aims to complete the census of dusty massive stars in the Local Group.


2011 ◽  
Vol 7 (S279) ◽  
pp. 110-117
Author(s):  
Schuyler D. Van Dyk

AbstractConnecting the endpoints of massive star evolution with the various types of core-collapse supernovae (SNe) is ultimately the fundamental puzzle to be explored and solved. We can assemble clues indirectly, e.g., from information about the environments in which stars explode and establish constraints on the evolutionary phases of these stars. However, this is best accomplished through direct identification of the actual star that has exploded in pre-supernova imaging, preferably in more than one photometric band, where color and luminosity for the star can be precisely measured. We can then interpret the star's properties in light of expectations from the latest massive stellar evolutionary models, to attempt to assign an initial mass to the progenitor. So far, this has been done most successfully for SNe II-P, for which we now know that red supergiants in a relatively limited initial mass range are responsible. More recently, we have limited examples of the progenitors of SNe II-L, IIn, and IIb. The progenitors of SNe Ib and Ic, however, have been elusive so far; I will discuss the current status of our knowledge of this particular channel.


1986 ◽  
Vol 7 ◽  
pp. 475-479
Author(s):  
André Maeder

Several properties of massive star evolution are of great interest for the understanding of young populations in galaxies: -the genetic connections predicted by the models for the various types of massive stars allow us to understand their filiation; -in order to study the differences of the relative star frequencies in galaxies, we have to know which properties affect the lifetimes in the various evolutionary stages; -the composition of stellar winds is interesting to discuss the wind injections into the interstellar material, particularly the injections by Wolf-Rayet stars, and to discuss the influence of mass loss on nucleosynthesis and chemical yields. Here we shall briefly summarize some recent results on these various problems. For more details the reader may refer to general reviews (cf. Humphreys, 1984; Maeder, 1984a,b; Chiosi and Maeder, 1986).


2003 ◽  
Vol 212 ◽  
pp. 316-324 ◽  
Author(s):  
Philip Massey

In this paper, I discuss the observational quantities that are useful for judging the successes and failures of current massive star evolutionary theory. The galaxies of the Local Group can serve as important laboratories for providing these diagnostics, as their metallicities vary by a factor of ten. We find that the evolutionary tracks do a good job of matching the distribution of stars in the H-R diagram during the main-sequence phase. However, none of the models produce RSGs that are as cool and as bright as what is observed. The relative number of WC and WN stars is a strong function of metallicity, and the Padova and Geneva ‘normal mass-loss’ models do a reasonably good job of matching the observations at low metallicities, but predict too few WCs at higher metallicity. The ‘enhanced’ mass-loss models of the Geneva group do not match the observations at all. New data is providing excellent statistics on the number of RSGs in these nearby galaxies, and the number ratio of RSGs to WRs is also an extremely sensitive function of metallicity. None of the models reproduce the trend of the RSG/WR ratio with metallicity.


1998 ◽  
Vol 11 (1) ◽  
pp. 381-381
Author(s):  
A.V. Dorodnitsyn

We have considered a stationary outflowing envelope accelerated by the radiative force in arbitrary optical depth case. Introduced approximations provide satisfactory description of the behavior of the matter flux with partially separated radiation at arbitrary optical depths. The obtained systemof differential equations provides a continuous transition of the solution between optically thin and optically thick regions. We analytically derivedapproximate representation of the solution at the vicinity of the sonic point. Using this representation we numerically integrate the system of equations from the critical point to the infinity. Matching the boundary conditions we obtain solutions describing the problem system of differential equations. The theoretical approach advanced in this work could be useful for self-consistent simulations of massive star evolution with mass loss.


2013 ◽  
Vol 63 ◽  
pp. 373-383 ◽  
Author(s):  
G. Meynet ◽  
P. Eggenberger ◽  
S. Ekström ◽  
C. Georgy ◽  
J. Groh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document