massive star evolution
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 14)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Vol 923 (1) ◽  
pp. 41
Author(s):  
Shing-Chi Leung ◽  
Samantha Wu ◽  
Jim Fuller

Abstract The discovery of rapidly rising and fading supernovae powered by circumstellar interaction has suggested the pre-supernova mass eruption phase as a critical phenomenon in massive star evolution. It is important to understand the mass and radial extent of the circumstellar medium (CSM) from theoretically predicted mass ejection mechanisms. In this work, we study the wave heating process in massive hydrogen-poor stars, running a suite of stellar models in order to predict the wave energy and pre-explosion timescale of surface energy deposition. We survey stellar models with main-sequence progenitor masses from 20–70 M ⊙ and metallicity from 0.002–0.02. Most of these models predict that less than ∼1047 erg is deposited in the envelope, with the majority of the energy deposited in the last week of stellar evolution. This translates to CSM masses less than ∼10−2 M ⊙ that extend to less than ∼1014 cm, too small to greatly impact the light curves or spectra of the subsequent supernovae, except perhaps during the shock breakout phase. However, a few models predict somewhat higher wave energy fluxes, for which we perform hydrodynamical simulations of the mass ejection process. Radiative transfer simulations of the subsequent supernovae predict a bright but brief shock-cooling phase that could be detected in some Type Ib/c supernovae if they are discovered within a couple days of explosion.


2021 ◽  
Vol 918 (1) ◽  
pp. 34
Author(s):  
Keiichi Maeda ◽  
Poonam Chandra ◽  
Tomoki Matsuoka ◽  
Stuart Ryder ◽  
Takashi J. Moriya ◽  
...  

Author(s):  
Sylvia Ekström

After a brief introduction to stellar modeling, the main lines of massive star evolution are reviewed, with a focus on the nuclear reactions from which the star gets the needed energy to counterbalance its gravity. The different burning phases are described, as well as the structural impact they have on the star. Some general effects on stellar evolution of uncertainties in the reaction rates are presented, with more precise examples taken from the uncertainties of the 12C(α, γ)16O reaction and the sensitivity of the s-process on many rates. The changes in the evolution of massive stars brought by low or zero metallicity are reviewed. The impact of convection, rotation, mass loss, and binarity on massive star evolution is reviewed, with a focus on the effect they have on the global nucleosynthetic products of the stars.


Author(s):  
R Dorda ◽  
L R Patrick

Abstract The characterisation of multiplicity among of high-mass stars is of fundamental importance to understand their evolution, the diversity of observed core-collapse supernovae and the formation of gravitational wave progenitor systems. Despite that, until recently, one of the final phases of massive star evolution – the cool supergiant phase – has received comparatively little attention. In this study we aim to explore the multiplicity among the cool supergiant (CSG) population in the Large and Small Magellanic Clouds (LMC and SMC, respectively). To do this we compile extensive archival radial velocity (RV) measurements for over 1000 CSGs from the LMC and SMC, spanning a baseline of over 40 years. By statistically correcting the RV measurements of each stellar catalogue to the Gaia DR2 reference frame we are able to effectively compare these diverse observations. We identify 45 CSGs where RV variations cannot be explained through intrinsic variability, and are hence considered binary systems. We obtain a minimum binary fraction of $15\pm 4{{\ \rm per\ cent}}$ for the SMC and of $14\pm 5{{\ \rm per\ cent}}$ for the LMC, restricting our sample to objects with at least 6 and 5 observational epochs, respectively. Combining these results, we determine a minimum binary fraction of $15\pm 3{{\ \rm per\ cent}}$ for CSGs. These results are in good agreement with previous results which apply a correction to account for observational biases. These results add strength to the hypothesis that the binary fraction of CSGs is significantly lower than their main-sequence counterparts. Going forward, we stress the need for long-baseline multi-epoch spectroscopic surveys to cover the full parameter space of CSG binary systems.


2020 ◽  
Vol 643 ◽  
pp. A116
Author(s):  
A. de Burgos ◽  
S. Simon-Díaz ◽  
D. J. Lennon ◽  
R. Dorda ◽  
I. Negueruela ◽  
...  

Context. The Perseus OB1 association, including the h and χ Persei double cluster, is an interesting laboratory for the investigation of massive star evolution as it hosts one of the most populous groupings of blue and red supergiants (Sgs) in the Galaxy at a moderate distance and extinction. Aims. We discuss whether the massive O-type, and blue and red Sg stars located in the Per OB1 region are members of the same population, and examine their binary and runaway status. Methods. We gathered a total of 405 high-resolution spectra for 88 suitable candidates around 4.5 deg from the center of the association, and compiled astrometric information from Gaia DR2 for all of them. This was used to investigate membership and identify runaway stars. By obtaining high-precision radial velocity (RV) estimates for all available spectra, we investigated the RV distribution of the global sample (as well as different subsamples) and identified spectroscopic binaries (SBs). Results. Most of the investigated stars belong to a physically linked population located at d = 2.5 ± 0.4 kpc. We identify 79 confirmed or likely members, and 5 member candidates. No important differences are detected in the distribution of parallaxes when stars in h and χ Persei or the full sample are considered. In contrast, most O-type stars seem to be part of a differentiated population in terms of kinematical properties. In particular, the percentage of runaways among them (45%) is considerable higher than for the more evolved targets (which is lower than ∼5% in all cases). A similar tendency is also found for the percentage of clearly detected SBs, which already decreases from 15% to 10% when the O star and B Sg samples are compared, respectively, and practically vanishes in the cooler Sgs. Concerning this latter result, our study illustrates the importance of taking the effect of the ubiquitous presence of intrinsic variability in the blue-to-red Sg domain into account to avoid the spurious identification of pulsating stars as SBs. Conclusions. All but 4 stars in our working sample (including 10 O giants/Sgs, 36 B Sgs, 9 B giants, 11 A/F Sgs, and 18 red Sgs) can be considered as part of the same (interrelated) population. However, any further attempt to describe the empirical properties of this sample of massive stars in an evolutionary context must take into account that an important fraction of the O stars is or likely has been part of a binary/multiple system. In addition, some of the other more evolved targets may have also been affected by binary evolution. In this line of argument, it is also interesting to note that the percentage of spectroscopic binaries within the evolved population of massive stars in Per OB1 is lower by a factor 4−5 than in the case of dedicated surveys of O-type stars in other environments that include a much younger population of massive stars.


2020 ◽  
Vol 641 ◽  
pp. A26
Author(s):  
K. Dsilva ◽  
T. Shenar ◽  
H. Sana ◽  
P. Marchant

Context. It is now well established that the majority of massive stars reside in multiple systems. However, the effect of multiplicity is not sufficiently understood, resulting in a plethora of uncertainties about the end stages of massive-star evolution. In order to investigate these uncertainties, it is useful to study massive stars just before their demise. Classical Wolf-Rayet stars represent the final end stages of stars at the upper-mass end. The multiplicity fraction of these stars was reported to be ∼0.4 in the Galaxy but no correction for observational biases has been attempted. Aims. The aim of this study is to conduct a homogeneous radial-velocity survey of a magnitude-limited (V ≤ 12) sample of Galactic Wolf-Rayet stars to derive their bias-corrected multiplicity properties. The present paper focuses on 12 northern Galactic carbon-rich (WC) Wolf-Rayet stars observable with the 1.2 m Mercator telescope on the island of La Palma. Methods. We homogeneously measured relative radial velocities (RVs) for carbon-rich Wolf-Rayet stars using cross-correlation. Variations in the derived RVs were used to flag binary candidates. We investigated probable orbital configurations and provide a first correction of observational biases through Monte-Carlo simulations. Results. Of the 12 northern Galactic WC stars in our sample, seven show peak-to-peak RV variations larger than 10 km s−1, which we adopt as our detection threshold. This results in an observed spectroscopic multiplicity fraction of 0.58 with a binomial error of 0.14. In our campaign, we find a clear lack of short-period (P < ∼100 d), indicating that a large number of Galactic WC binaries likely reside in long-period systems. Finally, our simulations show that at the 10% significance level, the intrinsic multiplicity fraction of the Galactic WC population is at least 0.72.


2020 ◽  
Vol 497 (4) ◽  
pp. 4128-4142
Author(s):  
P Jiménez-Hernández ◽  
S J Arthur ◽  
J A Toalá

ABSTRACT The Wolf–Rayet nebula M 1-67 around WR 124 is located above the Galactic plane in a region mostly empty of interstellar medium, which makes it the perfect target to study the mass-loss episodes associated with the late stages of massive star evolution. Archive photometric observations from Wide-field Infrared Survey Explorer(WISE), Spitzer (MIPS), and Herschel (PACS and SPIRE) are used to construct the spectral energy distribution (SED) of the nebula in the wavelength range of 12–500 μm. The infrared (photometric and spectroscopic) data and nebular optical data from the literature are modelled simultaneously using the spectral synthesis code cloudy, where the free parameters are the gas density distribution and the dust grain-sized distribution. The infrared SED can be reproduced by dust grains with two size distributions: an MRN power-law distribution with grain sizes between 0.005 and 0.05 μm and a population of large grains with representative size of 0.9 μm. The latter points towards an eruptive origin for the formation of M 1-67. The model predicts a nebular ionized gas mass of $M_\mathrm{ion} = 9.2^{+1.6}_{-1.5}~\mathrm{M}_\odot$ and the estimated mass-loss rate during the dust formation period is $\dot{M} \approx 6 \times 10^{-4}~ \mathrm{M}_\odot$ yr−1. We discuss the implications of our results in the context of single and binary stellar evolution and propose that M 1-67 represents the best candidate for a post-common envelope scenario in massive stars.


2020 ◽  
Vol 638 ◽  
pp. A39 ◽  
Author(s):  
N. Langer ◽  
C. Schürmann ◽  
K. Stoll ◽  
P. Marchant ◽  
D. J. Lennon ◽  
...  

Context. The recent gravitational wave measurements have demonstrated the existence of stellar mass black hole binaries. It is essential for our understanding of massive star evolution to identify the contribution of binary evolution to the formation of double black holes. Aims. A promising way to progress is investigating the progenitors of double black hole systems and comparing predictions with local massive star samples, such as the population in 30 Doradus in the Large Magellanic Cloud (LMC). Methods. With this purpose in mind, we analysed a large grid of detailed binary evolution models at LMC metallicity with initial primary masses between 10 and 40 M⊙, and identified the model systems that potentially evolve into a binary consisting of a black hole and a massive main-sequence star. We then derived the observable properties of such systems, as well as peculiarities of the OB star component. Results. We find that ∼3% of the LMC late-O and early-B stars in binaries are expected to possess a black hole companion when stars with a final helium core mass above 6.6 M⊙ are assumed to form black holes. While the vast majority of them may be X-ray quiet, our models suggest that these black holes may be identified in spectroscopic binaries, either by large amplitude radial velocity variations (≳50 km s−1) and simultaneous nitrogen surface enrichment, or through a moderate radial velocity (≳10 km s−1) and simultaneous rapid rotation of the OB star. The predicted mass ratios are such that main-sequence companions can be excluded in most cases. A comparison to the observed OB+WR binaries in the LMC, Be and X-ray binaries, and known massive black hole binaries supports our conclusion. Conclusions. We expect spectroscopic observations to be able to test key assumptions in our models, with important implications for massive star evolution in general and for the formation of double black hole mergers in particular.


2020 ◽  
Vol 635 ◽  
pp. A175 ◽  
Author(s):  
Erin R. Higgins ◽  
Jorick S. Vink

Context. Current massive star evolution grids are not able to simultaneously reproduce the empirical upper luminosity limit of red supergiants, the Humphrey–Davidson (HD) limit, nor the blue-to-red (B/R) supergiant ratio at high and low metallicity. Although previous studies have shown that the treatment of convection and semi-convection plays a role in the post-main-sequence (MS) evolution to blue or red supergiants (RSGs), a unified treatment for all metallicities has not been achieved so far. Aims. We focus on developing a better understanding of what drives massive star evolution to blue and red supergiant phases, with the ultimate aim of reproducing the HD limit at varied metallicities. We discuss the consequences of classifying B and R in the B/R ratio and clarify what is required to quantify a relatable theoretical B/R ratio for comparison with observations. Methods. For solar, Large Magellanic Cloud (50% solar), and Small Magellanic Cloud (20% solar) metallicities, we develop eight grids of MESA models for the mass range 20–60 M⊙ to probe the effect of semi-convection and overshooting on the core helium-burning phase. We compare rotating and non-rotating models with efficient (αsemi = 100) and inefficient semi-convection (αsemi = 0.1), with high and low amounts of core overshooting (αov of 0.1 or 0.5). The red and blue supergiant evolutionary phases are investigated by comparing the fraction of core He-burning lifetimes spent in each phase for a range of masses and metallicities. Results. We find that the extension of the convective core by overshooting αov = 0.5 has an effect on the post-MS evolution that can disable semi-convection, leading to more RSGs, but a lack of BSGs. We therefore implement αov = 0.1, which switches on semi-convective mixing, but for standard αsemi = 1 would result in an HD limit that is higher than observed at low Z (Large and Small Magellanic Clouds). Therefore, we need to implement very efficient semi-convection of αsemi = 100, which reproduces the HD limit at log L/L⊙ ∼ 5.5 for the Magellanic Clouds while simultaneously reproducing the Galactic HD limit of log L/L⊙ ∼ 5.8 naturally. The effect of semi-convection is not active at high metallicities because the envelope structure is depleted by strong mass loss such that semi-convective regions could not form. Conclusions. Metallicity-dependent mass loss plays an indirect, yet decisive role in setting the HD limit as a function of Z. For a combination of efficient semi-convection and low overshooting with standard Ṁ(Z), we find a natural HD limit at all metallicities.


Sign in / Sign up

Export Citation Format

Share Document