The Angular Momentum Problem in CDM Cosmolgies: The End of the Beginning?

2003 ◽  
Vol 208 ◽  
pp. 227-236
Author(s):  
H.M.P. Couchman ◽  
R.J. Thacker

We show, by adopting a plausible model for star formation and energetic feedback in cosmological simulations of galaxy formation, that we are able to alleviate the angular momentum problem which has bedeviled many previous attempts to generate realistic disc galaxies in Cold Dark Matter cosmogonies. This paper highlights the “cooling catastrophe” as manifest in numerical cosmology and describes a simple prescription for modelling the sub-resolution physics of star formation and feedback in Smoothed Particle Hydrodynamic simulations. We show results for angular momentum and disc scale length for simulations with and without feedback.

2020 ◽  
Vol 500 (3) ◽  
pp. 3594-3612
Author(s):  
P F Rohde ◽  
S Walch ◽  
S D Clarke ◽  
D Seifried ◽  
A P Whitworth ◽  
...  

ABSTRACT The accretion of material on to young protostars is accompanied by the launching of outflows. Observations show that accretion, and therefore also outflows, are episodic. However, the effects of episodic outflow feedback on the core scale are not well understood. We have performed 88 smoothed particle hydrodynamic simulations of turbulent dense $1 \, {{\mathrm{M}}}_{\odot }$ cores to study the influence of episodic outflow feedback on the stellar multiplicity and the star formation efficiency (SFE). Protostars are represented by sink particles, which use a subgrid model to capture stellar evolution, inner-disc evolution, episodic accretion, and the launching of outflows. By comparing simulations with and without episodic outflow feedback, we show that simulations with outflow feedback reproduce the binary statistics of young stellar populations, including the relative proportions of singles, binaries, triples, etc. and the high incidence of twin binaries with q ≥ 0.95; simulations without outflow feedback do not. Entrainment factors (the ratio between total outflowing mass and initially ejected mass) are typically ∼7 ± 2, but can be much higher if the total mass of stars formed in a core is low and/or outflow episodes are infrequent. By decreasing both the mean mass of the stars formed and the number of stars formed, outflow feedback reduces the SFE by about a factor of 2 (as compared with simulations that do not include outflow feedback).


2013 ◽  
Vol 9 (S303) ◽  
pp. 245-247
Author(s):  
William Lucas ◽  
Ian Bonnell ◽  
Melvyn Davies ◽  
Ken Rice

AbstractThe innermost parsec around Sgr A* has been found to play host to two disks or streamers of O and W-R stars. They are misaligned by an angle approaching 90°. That the stars are approximately coeval indicates that they formed in the same event rather than independently. We have performed smoothed particle hydrodynamic simulations of the infall of a single prolate cloud towards a massive black hole. As the cloud is disrupted, the large spread in angular momentum can, if conditions allow, lead to the creation of misaligned gas disks. In turn, stars may form within those disks. We are now investigating the origins of these clouds in the Galactic center (GC) region.


2010 ◽  
Vol 717 (1) ◽  
pp. 121-132 ◽  
Author(s):  
Charlotte R. Christensen ◽  
Thomas Quinn ◽  
Gregory Stinson ◽  
Jillian Bellovary ◽  
James Wadsley

2006 ◽  
Vol 373 (3) ◽  
pp. 1074-1090 ◽  
Author(s):  
Greg Stinson ◽  
Anil Seth ◽  
Neal Katz ◽  
James Wadsley ◽  
Fabio Governato ◽  
...  

2008 ◽  
Vol 4 (S254) ◽  
pp. 19-20
Author(s):  
Simon D. M. White

AbstractTogether with the discovery of the accelerated expansion of the present Universe and measurements of large-scale structure at low redshift, observations of the cosmic microwave background have established a standard paradigm in which all cosmic structure grew from small fluctuations generated at very early times in a flat universe which today consists of 72% dark energy, 23.5% dark matter and 4.5% ordinary baryons. The CMB sky provides us with a direct image of this universe when it was 400,000 years old and very nearly uniform. The galaxy formation problem is then to understand how observed galaxies with all their regularity and diversity arose from these very simple initial conditions. Although gravity is the prime driver, many physical processes appear to play an important role in this transformation, and direct numerical simulation has become the principal tool for detailed investigation of the complex and strongly nonlinear interactions between them.The evolution of structure in the gravitationally dominant Cold Dark Matter distribution can now be simulated in great detail, provided the effects of the baryons are ignored, and there is general consensus for the results on scales relevant to the formation of galaxies like our own. The basic nonlinear units are so-called “dark matter halos”, slowly rotating, triaxial, quasi-equilibrium systems with a universal cusped density profile and substantial substructure in the form of a host of much less massive subhalos which are concentrated primarily in their outer regions.Attempts to include the baryons, and so to model the formation of the visible parts of galaxies, have given much more diverse results. It has been known for 30 years that substantial feedback, presumably from stellar winds and supernovae, is required to prevent overcooling of gas and excessive star formation in the early stages of galaxy assembly. When realistic galaxy formation simulations first became possible in the early 1990's, this problem was immediately confirmed. Without effective feedback, typical halos produced galaxies which were too massive, too concentrated and had too little disk to be consistent with observation.Simple models for disk formation from the mid 1990's show that the angular momentum predicted for collapsing dark halos is sufficient for them to build a disk population similar to that observed. Direct simulations have repeatedly failed to confirm this picture, however, because nonlinear effects lead to substantial transfer of angular momentum between the various components. In most cases the condensing baryonic material loses angular momentum to the dark matter, and the final galaxy ends up with a disk that is too compact or contains too small a fraction of the stars.These problems have been reduced as successive generations of simulations have dramatically improved the numerical resolution and have introduced “better” implementations of feedback (i.e. more successful at building disks). Despite this, no high-resolution simulation has so far been able to produce a present-day disk galaxy with a bulge-to-disk mass ratio much less than one in a proper ΛCDM context. Such galaxies are common in the real Universe; our own Milky Way is a good example. The variety of results obtained by different groups show that this issue is very sensitive to how star formation and feedback are treated, and all implementations of these processes to date have been much too schematic to be confident of their predictions.The major outstanding issues I see related to disk galaxies and their formation are the following: Do real disk galaxies have the NFW halos predicted by the ΛCDM cosmology? If not, could the deviations have been produced by the formation of the observed baryonic components, or must the basic structure formation picture be changed? How are Sc and later type galaxies made? Why don't our simulations produce them? What determines which galaxies become barred and which not? Can we demonstrate that secular evolution produces the observed population of (pseudo)bulges from pre-existing disks? How does the observed population of thin disks survive bombardment by substructure and the other transient potential fluctuations expected in ΛCDM halos? Is a better treatment of feedback really the answer? If so, can we demonstrate it using chemical abundances as fossil tracers? And how can we best use observations at high redshift to clarify these formation issues?


2020 ◽  
Vol 499 (2) ◽  
pp. 2648-2661
Author(s):  
Aaron A Dutton ◽  
Tobias Buck ◽  
Andrea V Macciò ◽  
Keri L Dixon ◽  
Marvin Blank ◽  
...  

ABSTRACT We use cosmological hydrodynamical galaxy formation simulations from the NIHAO project to investigate the response of cold dark matter (CDM) haloes to baryonic processes. Previous work has shown that the halo response is primarily a function of the ratio between galaxy stellar mass and total virial mass, and the density threshold above which gas is eligible to form stars, n[cm−3]. At low n all simulations in the literature agree that dwarf galaxy haloes are cuspy, but at high n ≳ 100 there is no consensus. We trace halo contraction in dwarf galaxies with n ≳ 100 reported in some previous simulations to insufficient spatial resolution. Provided the adopted star formation threshold is appropriate for the resolution of the simulation, we show that the halo response is remarkably stable for n ≳ 5, up to the highest star formation threshold that we test, n = 500. This free parameter can be calibrated using the observed clustering of young stars. Simulations with low thresholds n ≤ 1 predict clustering that is too weak, while simulations with high star formation thresholds n ≳ 5, are consistent with the observed clustering. Finally, we test the CDM predictions against the circular velocities of nearby dwarf galaxies. Low thresholds predict velocities that are too high, while simulations with n ∼ 10 provide a good match to the observations. We thus conclude that the CDM model provides a good description of the structure of galaxies on kpc scales provided the effects of baryons are properly captured.


2020 ◽  
Vol 498 (1) ◽  
pp. 702-717 ◽  
Author(s):  
Mark R Lovell ◽  
Wojciech Hellwing ◽  
Aaron Ludlow ◽  
Jesús Zavala ◽  
Andrew Robertson ◽  
...  

ABSTRACT The nature of the dark matter can affect the collapse time of dark matter haloes, and can therefore be imprinted in observables such as the stellar population ages and star formation histories of dwarf galaxies. In this paper, we use high-resolution hydrodynamical simulations of Local Group-analogue (LG) volumes in cold dark matter (CDM), sterile neutrino warm dark matter (WDM) and self-interacting dark matter (SIDM) models with the eagle galaxy formation code to study how galaxy formation times change with dark matter model. We are able to identify the same haloes in different simulations, since they share the same initial density field phases. We find that the stellar mass of galaxies depends systematically on resolution, and can differ by as much as a factor of 2 in haloes of a given dark matter mass. The evolution of the stellar populations in SIDM is largely identical to that of CDM, but in WDM early star formation is instead suppressed. The time at which LG haloes can begin to form stars through atomic cooling is delayed by ∼200 Myr in WDM models compared to CDM. It will be necessary to measure stellar ages of old populations to a precision of better than 100 Myr, and to address degeneracies with the redshift of reionization – and potentially other baryonic processes – in order to use these observables to distinguish between dark matter models.


1999 ◽  
Vol 186 ◽  
pp. 201-201
Author(s):  
V. Missoulis

We examine a model of galaxy formation where the bulge is formed at very early stages and this burst of star formation leads to a galactic wind which interacts with a huge surrounding gaseous envelope.


Sign in / Sign up

Export Citation Format

Share Document