scholarly journals The Galaxy Environment of Quasars in the z ⋍ 1.3 Clowes-Campusano Large Quasar Group

2005 ◽  
Vol 201 ◽  
pp. 465-466
Author(s):  
C. P. Haines ◽  
R. G. Clowes ◽  
L. E. Campusano

We report significant associated clustering in the field of a z = 1.226 quasar from the Clowes-Campusano LQG in the form of both a factor ˜ 11 overdensity of I - K > 3.75 galaxies, and red sequences of 15-18 galaxies at I - K ⋍ 4.3, V - K ⋍ 6.9 indicative of a population of massive ellipticals at the quasar redshift. The quasar is located between two groups of these galaxies, with further clustering extending over 2-3 Mpc. A band of V - I < 1 galaxies bisects the two groups of red sequence galaxies, and we suggest that the merging of these two groups has triggered both this band of star-formation and the quasar.

2019 ◽  
Vol 489 (1) ◽  
pp. 1436-1450 ◽  
Author(s):  
Jianhui Lian ◽  
Daniel Thomas ◽  
Cheng Li ◽  
Zheng Zheng ◽  
Claudia Maraston ◽  
...  

ABSTRACT Within the standard model of hierarchical galaxy formation in a Λ cold dark matter universe, the environment of galaxies is expected to play a key role in driving galaxy formation and evolution. In this paper, we investigate whether and how the gas metallicity and the star formation surface density (ΣSFR) depend on galaxy environment. To this end, we analyse a sample of 1162 local, star-forming galaxies from the galaxy survey Mapping Nearby Galaxies at APO (MaNGA). Generally, both parameters do not show any significant dependence on environment. However, in agreement with previous studies, we find that low-mass satellite galaxies are an exception to this rule. The gas metallicity in these objects increases while their ΣSFR decreases slightly with environmental density. The present analysis of MaNGA data allows us to extend this to spatially resolved properties. Our study reveals that the gas metallicity gradients of low-mass satellites flatten and their ΣSFR gradients steepen with increasing environmental density. By extensively exploring a chemical evolution model, we identify two scenarios that are able to explain this pattern: metal-enriched gas accretion or pristine gas inflow with varying accretion time-scales. The latter scenario better matches the observed ΣSFR gradients, and is therefore our preferred solution. In this model, a shorter gas accretion time-scale at larger radii is required. This suggests that ‘outside–in quenching’ governs the star formation processes of low-mass satellite galaxies in dense environments.


2006 ◽  
Vol 2 (S235) ◽  
pp. 167-169
Author(s):  
Michael C. Cooper ◽  
Jeffrey A. Newman

The galaxy population at z ≲ 1 is effectively described as a combination of two distinct types: red, early-type galaxies lacking much star formation and blue, late-type galaxies with active star formation. For the red galaxy population, recent work by Bell et al. (2004) has shown that the number density of ~L* galaxies on the red sequence has risen by a factor of ~2 from z ~ 1 to z ~ 0. A variety of complementary observations suggests that the build-up of galaxies on the red sequence results from 2 distinct evolutionary trends: (1) the quenching of star formation in blue galaxies and their subsequent migration onto the red sequence and (2) the dissipationless or (“dry”) merging of red-sequence galaxies.


2020 ◽  
Vol 498 (3) ◽  
pp. 4345-4355
Author(s):  
Dejene Zewdie ◽  
Mirjana Pović ◽  
Manuel Aravena ◽  
Roberto J Assef ◽  
Asrate Gaulle

ABSTRACT We study a sample of 48 127 galaxies selected from the SDSS MPA-JHU catalogue, with log M⋆/M⊙ = 10.73−11.03 and z &lt; 0.1. Local galaxies in this stellar mass range have been shown to have systematically shorter assembly times within their inner regions (&lt;0.5 R50) when compared to that of the galaxy as a whole, contrary to lower or higher mass galaxies that show consistent assembly times at all radii. Hence, we refer to these galaxies as Inside-Out Assembled Galaxy (IOAG) candidates. We find that the majority of IOAG candidates with well-detected emission lines are classified as either active galactic nucleus (AGN; 40 per cent) or composite (40 per cent) in the BPT (Baldwin, Phillips & Terlevich) diagram. We also find that the majority of our sources are located below the main sequence of star formation, and within the green valley or red sequence. Most BPT-classified star-forming IOAG candidates have spiral morphologies and are in the main sequence, whereas Seyfert 2 and composites have mostly spiral morphologies but quiescent star formation rates (SFRs). We argue that a high fraction of IOAG candidates seem to be in the process of quenching, moving from the blue cloud to the red sequence. Those classified as AGN have systematically lower SFRs than star-forming galaxies, suggesting that AGN activity may be related to this quenching. However, the spiral morphology of these galaxies remains in place, suggesting that the central star formation is suppressed before the morphological transformation occurs.


2012 ◽  
Vol 757 (2) ◽  
pp. 122 ◽  
Author(s):  
Jesper Rasmussen ◽  
John S. Mulchaey ◽  
Lei Bai ◽  
Trevor J. Ponman ◽  
Somak Raychaudhury ◽  
...  

2019 ◽  
Vol 488 (3) ◽  
pp. 3904-3928 ◽  
Author(s):  
Ryan Leaman ◽  
Francesca Fragkoudi ◽  
Miguel Querejeta ◽  
Gigi Y C Leung ◽  
Dimitri A Gadotti ◽  
...  

ABSTRACT Stellar feedback plays a significant role in modulating star formation, redistributing metals, and shaping the baryonic and dark structure of galaxies – however, the efficiency of its energy deposition to the interstellar medium is challenging to constrain observationally. Here we leverage HST and ALMA imaging of a molecular gas and dust shell ($M_{\mathrm{ H}_2} \sim 2\times 10^{5}\, {\rm M}_{\odot }$) in an outflow from the nuclear star-forming ring of the galaxy NGC 3351, to serve as a boundary condition for a dynamical and energetic analysis of the outflowing ionized gas seen in our MUSE TIMER survey. We use starburst99 models and prescriptions for feedback from simulations to demonstrate that the observed star formation energetics can reproduce the ionized and molecular gas dynamics – provided a dominant component of the momentum injection comes from direct photon pressure from young stars, on top of supernovae, photoionization heating, and stellar winds. The mechanical energy budget from these sources is comparable to low luminosity active galactic neuclei, suggesting that stellar feedback can be a relevant driver of bulk gas motions in galaxy centres – although here ≲10−3 of the ionized gas mass is escaping the galaxy. We test several scenarios for the survival/formation of the cold gas in the outflow, including in situ condensation and cooling. Interestingly, the geometry of the molecular gas shell, observed magnetic field strengths and emission line diagnostics are consistent with a scenario where magnetic field lines aided survival of the dusty ISM as it was initially launched (with mass-loading factor ≲1) from the ring by stellar feedback. This system’s unique feedback-driven morphology can hopefully serve as a useful litmus test for feedback prescriptions in magnetohydrodynamical galaxy simulations.


2009 ◽  
Vol 5 (H15) ◽  
pp. 88-88
Author(s):  
Roberto P. Muñoz ◽  
L. F. Barrientos ◽  
B. P. Koester ◽  
D. G. Gilbank ◽  
M. D. Gladders ◽  
...  

AbstractWe use deep nIR imaging of 15 galaxy clusters at z ≃ 1 to study the build-up of the red-sequence in rich clusters since the Universe was half its present age. We measured, for the first time, the luminous-to-faint ratio of red-sequence galaxies at z=1 from a large ensemble of clusters, and found an increase of 100% in the ratio of luminous-to-faint red-sequence galaxies from z=0.45 to 1.0. The measured change in this ratio as function of redshift is well-reproduced by a simple evolutionary model developed in this work, that consists in an early truncation of the star formation for bright cluster galaxies and a delayed truncation for faint cluster galaxies.


2012 ◽  
Vol 8 (S294) ◽  
pp. 325-336 ◽  
Author(s):  
Blakesley Burkhart ◽  
Alex Lazarian

AbstractMagnetohydrodynamic (MHD) turbulence is a critical component of the current paradigms of star formation, dynamo theory, particle transport, magnetic reconnection and evolution of the ISM. In order to gain understanding of how MHD turbulence regulates processes in the Galaxy, a confluence of numerics, observations and theory must be imployed. In these proceedings we review recent progress that has been made on the connections between theoretical, numerical, and observational understanding of MHD turbulence as it applies to both the neutral and ionized interstellar medium.


2018 ◽  
Vol 616 ◽  
pp. A96 ◽  
Author(s):  
Yves Revaz ◽  
Pascale Jablonka

We present the results of a set of high-resolution chemo-dynamical simulations of dwarf galaxies in a ΛCDM cosmology. Out of an original (3.4 Mpc/h)3 cosmological box, a sample of 27 systems are re-simulated from z = 70 to z = 0 using a zoom-in technique. Gas and stellar properties are confronted to the observations in the greatest details: in addition to the galaxy global properties, we investigated the model galaxy velocity dispersion profiles, half-light radii, star formation histories, stellar metallicity distributions, and [Mg/Fe] abundance ratios. The formation and sustainability of the metallicity gradients and kinematically distinct stellar populations are also tackled. We show how the properties of six Local Group dwarf galaxies, NGC 6622, Andromeda II, Sculptor, Sextans, Ursa Minor and Draco are reproduced, and how they pertain to three main galaxy build-up modes. Our results indicate that the interaction with a massive central galaxy could be needed for a handful of Local Group dwarf spheroidal galaxies only, the vast majority of the systems and their variety of star formation histories arising naturally from a ΛCDM framework. We find that models fitting well the local Group dwarf galaxies are embedded in dark haloes of mass between 5 × 108 to a few 109 M⊙, without any missing satellite problem. We confirm the failure of the abundance matching approach at the mass scale of dwarf galaxies. Some of the observed faint however gas-rich galaxies with residual star formation, such as Leo T and Leo P, remain challenging. They point out the need of a better understanding of the UV-background heating.


2010 ◽  
Vol 6 (S270) ◽  
pp. 503-506
Author(s):  
Pedro Colín ◽  
Vladimir Avila-Reese ◽  
Octavio Valenzuela

AbstractCosmological Adaptive Mesh Refinement simulations are used to study the specific star formation rate (sSFR=SSF/Ms) history and the stellar mass fraction, fs=Ms/MT, of small galaxies, total masses MT between few × 1010 M⊙ to few ×1011 M⊙. Our results are compared with recent observational inferences that show the so-called “downsizing in sSFR” phenomenon: the less massive the galaxy, the higher on average is its sSFR, a trend seen at least since z ~ 1. The simulations are not able to reproduce this phenomenon, in particular the high inferred values of sSFR, as well as the low values of fs constrained from observations. The effects of resolution and sub-grid physics on the SFR and fs of galaxies are discussed.


2006 ◽  
Vol 2 (S237) ◽  
pp. 331-335
Author(s):  
Yu Gao

AbstractActive star formation (SF) is tightly related to the dense molecular gas in the giant molecular clouds' dense cores. Our HCN (measure of the dense molecular gas) survey in 65 galaxies (including 10 ultraluminous galaxies) reveals a tight linear correlation between HCN and IR (SF rate) luminosities, whereas the correlation between IR and CO (measure of the total molecular gas) luminosities is nonlinear. This suggests that the global SF rate depends more intimately upon the amount of dense molecular gas than the total molecular gas content. This linear relationship extends to both the dense cores in the Galaxy and the hyperluminous extreme starbursts at high-redshift. Therefore, the global SF law in dense gas appears to be linear all the way from dense cores to extreme starbursts, spanning over nine orders of magnitude in IR luminosity.


Sign in / Sign up

Export Citation Format

Share Document