scholarly journals Survival of molecular gas in a stellar feedback-driven outflow witnessed with the MUSE TIMER project and ALMA

2019 ◽  
Vol 488 (3) ◽  
pp. 3904-3928 ◽  
Author(s):  
Ryan Leaman ◽  
Francesca Fragkoudi ◽  
Miguel Querejeta ◽  
Gigi Y C Leung ◽  
Dimitri A Gadotti ◽  
...  

ABSTRACT Stellar feedback plays a significant role in modulating star formation, redistributing metals, and shaping the baryonic and dark structure of galaxies – however, the efficiency of its energy deposition to the interstellar medium is challenging to constrain observationally. Here we leverage HST and ALMA imaging of a molecular gas and dust shell ($M_{\mathrm{ H}_2} \sim 2\times 10^{5}\, {\rm M}_{\odot }$) in an outflow from the nuclear star-forming ring of the galaxy NGC 3351, to serve as a boundary condition for a dynamical and energetic analysis of the outflowing ionized gas seen in our MUSE TIMER survey. We use starburst99 models and prescriptions for feedback from simulations to demonstrate that the observed star formation energetics can reproduce the ionized and molecular gas dynamics – provided a dominant component of the momentum injection comes from direct photon pressure from young stars, on top of supernovae, photoionization heating, and stellar winds. The mechanical energy budget from these sources is comparable to low luminosity active galactic neuclei, suggesting that stellar feedback can be a relevant driver of bulk gas motions in galaxy centres – although here ≲10−3 of the ionized gas mass is escaping the galaxy. We test several scenarios for the survival/formation of the cold gas in the outflow, including in situ condensation and cooling. Interestingly, the geometry of the molecular gas shell, observed magnetic field strengths and emission line diagnostics are consistent with a scenario where magnetic field lines aided survival of the dusty ISM as it was initially launched (with mass-loading factor ≲1) from the ring by stellar feedback. This system’s unique feedback-driven morphology can hopefully serve as a useful litmus test for feedback prescriptions in magnetohydrodynamical galaxy simulations.

2019 ◽  
Vol 493 (2) ◽  
pp. 2872-2909 ◽  
Author(s):  
Mélanie Chevance ◽  
J M Diederik Kruijssen ◽  
Alexander P S Hygate ◽  
Andreas Schruba ◽  
Steven N Longmore ◽  
...  

ABSTRACT It remains a major challenge to derive a theory of cloud-scale ($\lesssim100$ pc) star formation and feedback, describing how galaxies convert gas into stars as a function of the galactic environment. Progress has been hampered by a lack of robust empirical constraints on the giant molecular cloud (GMC) lifecycle. We address this problem by systematically applying a new statistical method for measuring the evolutionary timeline of the GMC lifecycle, star formation, and feedback to a sample of nine nearby disc galaxies, observed as part of the PHANGS-ALMA survey. We measure the spatially resolved (∼100 pc) CO-to-H α flux ratio and find a universal de-correlation between molecular gas and young stars on GMC scales, allowing us to quantify the underlying evolutionary timeline. GMC lifetimes are short, typically $10\!-\!30\,{\rm Myr}$, and exhibit environmental variation, between and within galaxies. At kpc-scale molecular gas surface densities $\Sigma _{\rm H_2}\ge 8\,\rm {M_\odot}\,{{\rm pc}}^{-2}$, the GMC lifetime correlates with time-scales for galactic dynamical processes, whereas at $\Sigma _{\rm H_2}\le 8\,\rm {M_\odot}\,{{\rm pc}}^{-2}$ GMCs decouple from galactic dynamics and live for an internal dynamical time-scale. After a long inert phase without massive star formation traced by H α (75–90 per cent of the cloud lifetime), GMCs disperse within just $1\!-\!5\,{\rm Myr}$ once massive stars emerge. The dispersal is most likely due to early stellar feedback, causing GMCs to achieve integrated star formation efficiencies of 4–10 per cent. These results show that galactic star formation is governed by cloud-scale, environmentally dependent, dynamical processes driving rapid evolutionary cycling. GMCs and H ii regions are the fundamental units undergoing these lifecycles, with mean separations of $100\!-\!300\,{{\rm pc}}$ in star-forming discs. Future work should characterize the multiscale physics and mass flows driving these lifecycles.


2008 ◽  
Vol 4 (S259) ◽  
pp. 25-34
Author(s):  
Gary J. Ferland

AbstractMagnetic pressure has long been known to dominate over gas pressure in atomic and molecular regions of the interstellar medium. Here I review several recent observational studies of the relationships between the H+, H0 and H2 regions in M42 (the Orion complex) and M17. A simple picture results. When stars form they push back surrounding material, mainly through the outward momentum of starlight acting on grains, and field lines are dragged with the gas due to flux freezing. The magnetic field is compressed and the magnetic pressure increases until it is able to resist further expansion and the system comes into approximate magnetostatic equilibrium. Magnetic field lines can be preferentially aligned perpendicular to the long axis of quiescent cloud before stars form. After star formation and pushback occurs ionized gas will be constrained to flow along field lines and escape from the system along directions perpendicular to the long axis. The magnetic field may play other roles in the physics of the H II region and associated PDR. Cosmic rays may be enhanced along with the field and provide additional heating of atomic and molecular material. Wave motions may be associated with the field and contribute a component of turbulence to observed line profiles.


2020 ◽  
Vol 492 (2) ◽  
pp. 2973-2995 ◽  
Author(s):  
Robin G Tress ◽  
Rowan J Smith ◽  
Mattia C Sormani ◽  
Simon C O Glover ◽  
Ralf S Klessen ◽  
...  

ABSTRACT We present here the first of a series of papers aimed at better understanding the evolution and properties of giant molecular clouds (GMCs) in a galactic context. We perform high-resolution, three-dimensional arepo simulations of an interacting galaxy inspired by the well-observed M51 galaxy. Our fiducial simulations include a non-equilibrium, time-dependent, chemical network that follows the evolution of atomic and molecular hydrogen as well as carbon and oxygen self-consistently. Our calculations also treat gas self-gravity and subsequent star formation (described by sink particles), and coupled supernova feedback. In the densest parts of the simulated interstellar medium (ISM), we reach sub-parsec resolution, granting us the ability to resolve individual GMCs and their formation and destruction self-consistently throughout the galaxy. In this initial work, we focus on the general properties of the ISM with a particular focus on the cold star-forming gas. We discuss the role of the interaction with the companion galaxy in generating cold molecular gas and controlling stellar birth. We find that while the interaction drives large-scale gas flows and induces spiral arms in the galaxy, it is of secondary importance in determining gas fractions in the different ISM phases and the overall star formation rate. The behaviour of the gas on small GMC scales instead is mostly controlled by the self-regulating property of the ISM driven by coupled feedback.


2020 ◽  
Vol 500 (3) ◽  
pp. 3802-3820
Author(s):  
L M Hogarth ◽  
A Saintonge ◽  
L Cortese ◽  
T A Davis ◽  
S M Croom ◽  
...  

ABSTRACT We perform a joint analysis of high spatial resolution molecular gas and star-formation rate (SFR) maps in main-sequence star-forming galaxies experiencing galactic-scale outflows of ionized gas. Our aim is to understand the mechanism that determines which galaxies are able to launch these intense winds. We observed CO(1→0) at 1-arcsec resolution with ALMA in 16 edge-on galaxies, which also have 2-arcsec spatial-resolution optical integral field observations from the SAMI Galaxy Survey. Half the galaxies in the sample were previously identified as harbouring intense and large-scale outflows of ionized gas (‘outflow types’) and the rest serve as control galaxies. The data set is complemented by integrated CO(1→0) observations from the IRAM 30-m telescope to probe the total molecular gas reservoirs. We find that the galaxies powering outflows do not possess significantly different global gas fractions or star-formation efficiencies when compared with a control sample. However, the ALMA maps reveal that the molecular gas in the outflow-type galaxies is distributed more centrally than in the control galaxies. For our outflow-type objects, molecular gas and star-formation are largely confined within their inner effective radius (reff), whereas in the control sample, the distribution is more diffuse, extending far beyond reff. We infer that outflows in normal star-forming galaxies may be caused by dynamical mechanisms that drive molecular gas into their central regions, which can result in locally enhanced gas surface density and star-formation.


2019 ◽  
Vol 488 (1) ◽  
pp. L80-L84 ◽  
Author(s):  
J Méndez-Abreu ◽  
S F Sánchez ◽  
A de Lorenzo-Cáceres

ABSTRACT The star formation main sequence (SFMS) is a tight relation between the galaxy star formation rate (SFR) and its total stellar mass (M⋆). Early-type galaxies (ETGs) are often considered as low-SFR outliers of this relation. We study, for the first time, the separated distribution in the SFR versus M⋆ of bulges and discs of 49 ETGs from the CALIFA survey. This is achieved using c2d, a new code to perform spectrophotometric decompositions of integral field spectroscopy data cubes. Our results reflect that: (i) star formation always occurs in the disc component and not in bulges; (ii) star-forming discs in our ETGs are compatible with the SFMS defined by star-forming galaxies at z ∼ 0; (iii) the star formation is not confined to the outskirts of discs, but it is present at all radii (even where the bulge dominates the light); (iv) for a given mass, bulges exhibit lower sSFR than discs at all radii; and (v) we do not find a deficit of molecular gas in bulges with respect to discs for a given mass in our ETGs. We speculate our results favour a morphological quenching scenario for ETGs.


2021 ◽  
Vol 7 (15) ◽  
pp. eabe9511
Author(s):  
Matteo Luisi ◽  
Loren D. Anderson ◽  
Nicola Schneider ◽  
Robert Simon ◽  
Slawa Kabanovic ◽  
...  

Radiative and mechanical feedback of massive stars regulates star formation and galaxy evolution. Positive feedback triggers the creation of new stars by collecting dense shells of gas, while negative feedback disrupts star formation by shredding molecular clouds. Although key to understanding star formation, their relative importance is unknown. Here, we report velocity-resolved observations from the SOFIA (Stratospheric Observatory for Infrared Astronomy) legacy program FEEDBACK of the massive star-forming region RCW 120 in the [CII] 1.9-THz fine-structure line, revealing a gas shell expanding at 15 km/s. Complementary APEX (Atacama Pathfinder Experiment) CO J = 3-2 345-GHz observations exhibit a ring structure of molecular gas, fragmented into clumps that are actively forming stars. Our observations demonstrate that triggered star formation can occur on much shorter time scales than hitherto thought (<0.15 million years), suggesting that positive feedback operates on short time periods.


2021 ◽  
Vol 503 (1) ◽  
pp. 336-343
Author(s):  
R Kannan ◽  
M Vogelsberger ◽  
F Marinacci ◽  
L V Sales ◽  
P Torrey ◽  
...  

ABSTRACT Winds driven by stellar feedback are an essential part of the galactic ecosystem and are the main mechanism through which low-mass galaxies regulate their star formation. These winds are generally observed to be multiphase with detections of entrained neutral and molecular gas. They are also thought to enrich the circumgalactic medium around galaxies with metals and dust. This ejected dust encodes information about the integrated star formation and outflow history of the galaxy. Therefore it is important to understand how much dust is entrained and driven out of the disc by galactic winds. Here, we demonstrate that stellar feedback is efficient in driving dust-enriched winds and eject enough material to account for the amount of extraplanar dust observed in nearby galaxies. The amount of ejected dust depends on the sites from where they are launched, with dustier galaxies launching more dust-enriched outflows. Moreover, the outflowing cold and dense gas is significantly more dust enriched than the volume filling hot and tenuous material. These results provide an important new insight into the dynamics, structure, and composition of galactic winds and their role in determining the dust content of the extragalactic gas in galaxies.


2020 ◽  
Vol 499 (2) ◽  
pp. 2534-2553
Author(s):  
Venu M Kalari ◽  
Monica Rubio ◽  
Hugo P Saldaño ◽  
Alberto D Bolatto

ABSTRACT Magellanic Bridge C (MB-C) is a metal-poor (∼1/5 Z⊙) low-density star-forming region located 59 kpc away in the Magellanic Bridge, offering a resolved view of the star formation process in conditions different to the Galaxy. From Atacama Large Millimetre Array CO (1–0) observations, we detect molecular clumps associated with candidate young stellar objects (YSOs), pre-main sequence (PMS) stars, and filamentary structure identified in far-infrared imaging. YSOs and PMS stars form in molecular gas having densities between 17 and 200 M⊙ pc−2, and have ages between ≲0.1 and 3 Myr. YSO candidates in MB -C have lower extinction than their Galactic counterparts. Otherwise, our results suggest that the properties and morphologies of molecular clumps, YSOs, and PMS stars in MB -C present no patent differences with respect to their Galactic counterparts, tentatively alluding that the bottleneck to forming stars in regions similar to MB-C is the conversion of atomic gas to molecular.


2012 ◽  
Vol 8 (S292) ◽  
pp. 333-333
Author(s):  
Steven N. Longmore

AbstractRecent surface- and volume-density star formation relations have been proposed which potentially unify our understanding of how gas is converted into stars, from the nearest star forming regions to ultra-luminous infrared galaxies. The inner 500 pc of our Galaxy – the Central Molecular Zone – contains the largest concentration of dense, high-surface density molecular gas in the Milky Way, providing an environment where the validity of these star-formation prescriptions can be tested.We have used recently-available data from HOPS, MALT90 and HiGAL at wavelengths where the Galaxy is transparent, to find the dense, star-forming molecular gas across the Milky Way [Longmore et al. (2012a), Longmore et al. (2012b)]. We use water and methanol maser emission to trace star formation activity within the last 105 years and 30 GHz radio continuum emission from the Wilkinson Microwave Anisotropy Satellite (WMAP) to estimate the high-mass star formation rate averaged over the last ∼ 4 × 106 years.We find the dense gas distribution is dominated by the very bright and spatially-extended emission within a few degrees of the Galactic centre [Purcell et al. (2012)]. This region accounts for ∼80% of the NH3(1,1) integrated intensity but only contains 4% of the survey area. However, in stark contrast, the distribution of star formation activity tracers is relatively uniform across the Galaxy.To probe the dense gas vs SFR relationship towards the Galactic centre region more quantitatively, we compared the HiGAL column density maps to the WMAP-derived SFR across the same region. The total mass and SFR derived using these methods agree well with previous values in the literature. The main conclusion from this analysis is that both the column-density threshold and volumetric SF relations over-predict the SFR by an order of magnitude given the reservoir of dense gas available to form stars. The region 1° < l < 3.5°, |b| < 0.5° is particular striking in this regard. It contains ∼107 M⊙ of dense molecular gas — enough to form 1000 Orion-like clusters — but the present-day star formation rate within this gas is only equivalent to that in Orion. This implication of this result is that any universal column/volume density relations must be a necessary but not sufficient condition for SF to occur.Understanding why such large reservoirs of dense gas deviate from commonly assumed SF relations is of fundamental importance and may help in the quest to understand SF in more extreme (dense) environments, like those found in interacting galaxies and at earlier epochs of the Universe.


2015 ◽  
Vol 11 (S315) ◽  
pp. 258-261
Author(s):  
D. Utomo ◽  
L. Blitz ◽  
A. Bolatto ◽  
T. Wong ◽  
A. Leroy ◽  
...  

AbstractWe present an updated status of the EDGE project, which is a survey of 125 local galaxies in the 12CO(1−0) and 13CO(1−0) lines. We combine the molecular data of the EDGE survey with the stellar and ionized gas maps of the CALIFA survey to give a comprehensive view of the dependence of the star formation efficiency, or equivalently, the molecular gas depletion time, on various local environments, such as the stellar surface density, metallicity, and radius from the galaxy center. This study will provide insight into the parameters that drive the star formation efficiency in galaxies at z ~ 0.


Sign in / Sign up

Export Citation Format

Share Document