Constraining Galaxy Formation Epoch

2005 ◽  
Vol 201 ◽  
pp. 536-537
Author(s):  
Sukyoung. Yi ◽  
T. Brown ◽  
S. Heap ◽  
I. Hubeny ◽  
W. Landsman ◽  
...  

Pinning down the ages of high redshift galaxies is the most direct way of constraining the galaxy formation epoch. There has been a debate on the age of LBDS 53W091, a red galaxy at z=1.5. The discrepancy in the age estimates of various groups is due to the difference in the population synthesis model. However, there is generally a good agreement among popular models. Polishing the models and assessing their internal uncertainties are crucial in the analysis of high redshift galaxies.

2019 ◽  
Vol 488 (4) ◽  
pp. 5551-5565 ◽  
Author(s):  
Yueying Ni ◽  
Mei-Yu Wang ◽  
Yu Feng ◽  
Tiziana Di Matteo

ABSTRACT During the last decades, rapid progress has been made in measurements of the rest-frame ultraviolet (UV) luminosity function (LF) for high-redshift galaxies (z ≥ 6). The faint-end of the galaxy LF at these redshifts provides powerful constraints on different dark matter (DM) models that suppress small-scale structure formation. In this work we perform full hydrodynamical cosmological simulations of galaxy formation using an alternative DM model composed of extremely light bosonic particles (m ∼ 10−22 eV), also known as fuzzy dark matter (FDM), and examine the predictions for the galaxy stellar mass function and LF at z ≥ 6 for a range of FDM masses. We find that for FDM models with bosonic mass m = 5 × 10−22 eV, the number density of galaxies with stellar mass $\rm M_* \sim 10^7 M_{\odot }$ is suppressed by $\sim 40\, {\rm per\, cent}$ at z  = 9, $\sim 20\, {\rm per\, cent}$ at z  = 5, and the UV LFs within magnitude range of −16 < MUV < −14 is suppressed by $\sim 60\, {\rm per\, cent}$ at z = 9, $\sim 20\, {\rm per\, cent}$ at z = 5 comparing to the cold dark matter counterpart simulation. Comparing our predictions with current measurements of the faint-end LFs (−18 ≤ MUV ≤ −14), we find that FDM models with m22 < 5 × 10−22 are ruled out at 3σ confidence level. We expect that future LF measurements by James Webb Space Telescope, which will extend down to MUV ∼ −13 for z ≲ 10, with a survey volume that is comparable to the Hubble Ultra Deep Field would have the capability to constrain FDM models to m  ≳ 10−21 eV.


2020 ◽  
Vol 498 (1) ◽  
pp. 164-180 ◽  
Author(s):  
Harley Katz ◽  
Dominika Ďurovčíková ◽  
Taysun Kimm ◽  
Joki Rosdahl ◽  
Jeremy Blaizot ◽  
...  

ABSTRACT Identifying low-redshift galaxies that emit Lyman continuum radiation (LyC leakers) is one of the primary, indirect methods of studying galaxy formation in the epoch of reionization. However, not only has it proved challenging to identify such systems, it also remains uncertain whether the low-redshift LyC leakers are truly ‘analogues’ of the sources that reionized the Universe. Here, we use high-resolution cosmological radiation hydrodynamics simulations to examine whether simulated galaxies in the epoch of reionization share similar emission line properties to observed LyC leakers at z ∼ 3 and z ∼ 0. We find that the simulated galaxies with high LyC escape fractions (fesc) often exhibit high O32 and populate the same regions of the R23–O32 plane as z ∼ 3 LyC leakers. However, we show that viewing angle, metallicity, and ionization parameter can all impact where a galaxy resides on the O32–fesc plane. Based on emission line diagnostics and how they correlate with fesc, lower metallicity LyC leakers at z ∼ 3 appear to be good analogues of reionization-era galaxies. In contrast, local [S ii]-deficient galaxies do not overlap with the simulated high-redshift LyC leakers on the S ii Baldwin–Phillips–Terlevich (BPT) diagram; however, this diagnostic may still be useful for identifying leakers. We use our simulated galaxies to develop multiple new diagnostics to identify LyC leakers using infrared and nebular emission lines. We show that our model using only [C ii]158 μm and [O iii]88 μm can identify potential leakers from non-leakers from the local Dwarf Galaxy Survey. Finally, we apply this diagnostic to known high-redshift galaxies and find that MACS 1149_JD1 at z = 9.1 is the most likely galaxy to be actively contributing to the reionization of the Universe.


2019 ◽  
Vol 488 (2) ◽  
pp. 1941-1959 ◽  
Author(s):  
Madeline A Marshall ◽  
Simon J Mutch ◽  
Yuxiang Qin ◽  
Gregory B Poole ◽  
J Stuart B Wyithe

Abstract We study the sizes, angular momenta, and morphologies of high-redshift galaxies, using an update of the meraxes semi-analytic galaxy evolution model. Our model successfully reproduces a range of observations from redshifts z = 0–10. We find that the effective radius of a galaxy disc scales with ultraviolet (UV) luminosity as $R_\mathrm{ e}\propto L_{\textrm{UV}}^{0.33}$ at z = 5–10, and with stellar mass as $R_e\propto M_\ast ^{0.24}$ at z = 5 but with a slope that increases at higher redshifts. Our model predicts that the median galaxy size scales with redshift as Re ∝ (1 + z)−m, where m = 1.98 ± 0.07 for galaxies with (0.3–1)$L^\ast _{z=3}$ and m = 2.15 ± 0.05 for galaxies with (0.12–0.3)$L^\ast _{z=3}$. We find that the ratio between stellar and halo specific angular momentum is typically less than 1 and decreases with halo and stellar mass. This relation shows no redshift dependence, while the relation between specific angular momentum and stellar mass decreases by ∼0.5 dex from z = 7 to z = 2. Our model reproduces the distribution of local galaxy morphologies, with bulges formed predominantly through galaxy mergers for low-mass galaxies, disc-instabilities for galaxies with M* ≃ 1010–$10^{11.5}\, \mathrm{M}_\odot$, and major mergers for the most massive galaxies. At high redshifts, we find galaxy morphologies that are predominantly bulge-dominated.


2016 ◽  
Vol 465 (3) ◽  
pp. 3134-3142 ◽  
Author(s):  
Chuanwu Liu ◽  
Simon J. Mutch ◽  
Gregory B. Poole ◽  
P. W. Angel ◽  
Alan R. Duffy ◽  
...  

2017 ◽  
Vol 849 (2) ◽  
pp. 155 ◽  
Author(s):  
Marta Volonteri ◽  
Amy E. Reines ◽  
Hakim Atek ◽  
Daniel P. Stark ◽  
Maxime Trebitsch

2016 ◽  
Vol 11 (S321) ◽  
pp. 333-335
Author(s):  
Fuyan Bian ◽  
Lisa J. Kewley ◽  
Michael A. Dopita ◽  
Stephanie Juneau

AbstractLocal analog galaxies play an important role in understanding the properties of high-redshift galaxies. We present a method to select a type of local analog that closely resembles the ionized interstellar medium conditions in high-redshift galaxies. These galaxies are selected based on their locations in the [O III]/Hβ versus [N II]/Hα nebular emission-line diagnostic diagram. The ionization parameters and electron densities in these analogs are comparable to those in z ≃ 2 − 3 galaxies, but higher than those in normal SDSS galaxies by ≃ 0.6 dex and ≃ 0.9 dex, respectively. We find that the high sSFR and SFR surface density can enhance the electron densities and the ionization parameters, but still cannot fully explain the difference in ISM condition between nearby galaxies and the local analogs/high-redshift galaxies.


2012 ◽  
Vol 8 (S290) ◽  
pp. 183-184 ◽  
Author(s):  
María Celeste Artale ◽  
Leonardo J. Pellizza ◽  
Patricia B. Tissera ◽  
I. Felix Mirabel

AbstractRecent observational and theoretical results suggest that the production rates and luminosities of high-mass X-ray binaries depend on metallicity. To test this prediction, we combine HMXB population synthesis results with numerical simulations of galaxy formation to produce synthetic populations of HMXBs in star-forming galaxies, and compare the model predictions to observations of HMXB populations in nearby and high-redshift galaxies. Our models show a fair agreement with observations only when the HMXB production and luminosities are assumed to depend strongly on metallicity.


2016 ◽  
Vol 462 (1) ◽  
pp. 235-249 ◽  
Author(s):  
Chuanwu Liu ◽  
Simon J. Mutch ◽  
P. W. Angel ◽  
Alan R. Duffy ◽  
Paul M. Geil ◽  
...  

2020 ◽  
Vol 494 (1) ◽  
pp. 1263-1275 ◽  
Author(s):  
Xi Meng ◽  
Oleg Y Gnedin

ABSTRACT We examine the nature of kpc-scale clumps seen in high-redshift galaxies using a suite of cosmological simulations of galaxy formation. We identify rest-frame UV clumps in mock HST images smoothed to 500 pc resolution, and compare them with the intrinsic 3D clumps of young stars identified in the simulations with 100 pc resolution. According to this comparison for the progenitors of Milky Way-sized galaxies probed by our simulations, we expect that the stellar masses of the observed clumps are overestimated by as much as an order of magnitude, and that the sizes of these clumps are also overestimated by factor of several, due to a combination of spatial resolution and projection. The masses of young stars contributing most of the UV emission can also be overestimated by factor of a few. We find that most clumps of young stars present in a simulation at one time dissolve on a timescale shorter than ∼150 Myr. Some clumps with dense cores can last longer but eventually disperse. Most of the clumps are not bound structures, with virial parameter αvir > 1. We find similar results for clumps identified in mock maps of H α emission measure. We examine the predictions for effective clump sizes from the linear theory of gravitational perturbations and conclude that they are inconsistent with being formed by global disc instabilities. Instead, the observed clumps represent random projections of multiple compact star-forming regions.


Sign in / Sign up

Export Citation Format

Share Document