scholarly journals Dark-ages reionization and galaxy formation simulation – XVII. Sizes, angular momenta, and morphologies of high-redshift galaxies

2019 ◽  
Vol 488 (2) ◽  
pp. 1941-1959 ◽  
Author(s):  
Madeline A Marshall ◽  
Simon J Mutch ◽  
Yuxiang Qin ◽  
Gregory B Poole ◽  
J Stuart B Wyithe

Abstract We study the sizes, angular momenta, and morphologies of high-redshift galaxies, using an update of the meraxes semi-analytic galaxy evolution model. Our model successfully reproduces a range of observations from redshifts z = 0–10. We find that the effective radius of a galaxy disc scales with ultraviolet (UV) luminosity as $R_\mathrm{ e}\propto L_{\textrm{UV}}^{0.33}$ at z = 5–10, and with stellar mass as $R_e\propto M_\ast ^{0.24}$ at z = 5 but with a slope that increases at higher redshifts. Our model predicts that the median galaxy size scales with redshift as Re ∝ (1 + z)−m, where m = 1.98 ± 0.07 for galaxies with (0.3–1)$L^\ast _{z=3}$ and m = 2.15 ± 0.05 for galaxies with (0.12–0.3)$L^\ast _{z=3}$. We find that the ratio between stellar and halo specific angular momentum is typically less than 1 and decreases with halo and stellar mass. This relation shows no redshift dependence, while the relation between specific angular momentum and stellar mass decreases by ∼0.5 dex from z = 7 to z = 2. Our model reproduces the distribution of local galaxy morphologies, with bulges formed predominantly through galaxy mergers for low-mass galaxies, disc-instabilities for galaxies with M* ≃ 1010–$10^{11.5}\, \mathrm{M}_\odot$, and major mergers for the most massive galaxies. At high redshifts, we find galaxy morphologies that are predominantly bulge-dominated.

2019 ◽  
Vol 488 (4) ◽  
pp. 5551-5565 ◽  
Author(s):  
Yueying Ni ◽  
Mei-Yu Wang ◽  
Yu Feng ◽  
Tiziana Di Matteo

ABSTRACT During the last decades, rapid progress has been made in measurements of the rest-frame ultraviolet (UV) luminosity function (LF) for high-redshift galaxies (z ≥ 6). The faint-end of the galaxy LF at these redshifts provides powerful constraints on different dark matter (DM) models that suppress small-scale structure formation. In this work we perform full hydrodynamical cosmological simulations of galaxy formation using an alternative DM model composed of extremely light bosonic particles (m ∼ 10−22 eV), also known as fuzzy dark matter (FDM), and examine the predictions for the galaxy stellar mass function and LF at z ≥ 6 for a range of FDM masses. We find that for FDM models with bosonic mass m = 5 × 10−22 eV, the number density of galaxies with stellar mass $\rm M_* \sim 10^7 M_{\odot }$ is suppressed by $\sim 40\, {\rm per\, cent}$ at z  = 9, $\sim 20\, {\rm per\, cent}$ at z  = 5, and the UV LFs within magnitude range of −16 < MUV < −14 is suppressed by $\sim 60\, {\rm per\, cent}$ at z = 9, $\sim 20\, {\rm per\, cent}$ at z = 5 comparing to the cold dark matter counterpart simulation. Comparing our predictions with current measurements of the faint-end LFs (−18 ≤ MUV ≤ −14), we find that FDM models with m22 < 5 × 10−22 are ruled out at 3σ confidence level. We expect that future LF measurements by James Webb Space Telescope, which will extend down to MUV ∼ −13 for z ≲ 10, with a survey volume that is comparable to the Hubble Ultra Deep Field would have the capability to constrain FDM models to m  ≳ 10−21 eV.


2020 ◽  
Vol 498 (1) ◽  
pp. 164-180 ◽  
Author(s):  
Harley Katz ◽  
Dominika Ďurovčíková ◽  
Taysun Kimm ◽  
Joki Rosdahl ◽  
Jeremy Blaizot ◽  
...  

ABSTRACT Identifying low-redshift galaxies that emit Lyman continuum radiation (LyC leakers) is one of the primary, indirect methods of studying galaxy formation in the epoch of reionization. However, not only has it proved challenging to identify such systems, it also remains uncertain whether the low-redshift LyC leakers are truly ‘analogues’ of the sources that reionized the Universe. Here, we use high-resolution cosmological radiation hydrodynamics simulations to examine whether simulated galaxies in the epoch of reionization share similar emission line properties to observed LyC leakers at z ∼ 3 and z ∼ 0. We find that the simulated galaxies with high LyC escape fractions (fesc) often exhibit high O32 and populate the same regions of the R23–O32 plane as z ∼ 3 LyC leakers. However, we show that viewing angle, metallicity, and ionization parameter can all impact where a galaxy resides on the O32–fesc plane. Based on emission line diagnostics and how they correlate with fesc, lower metallicity LyC leakers at z ∼ 3 appear to be good analogues of reionization-era galaxies. In contrast, local [S ii]-deficient galaxies do not overlap with the simulated high-redshift LyC leakers on the S ii Baldwin–Phillips–Terlevich (BPT) diagram; however, this diagnostic may still be useful for identifying leakers. We use our simulated galaxies to develop multiple new diagnostics to identify LyC leakers using infrared and nebular emission lines. We show that our model using only [C ii]158 μm and [O iii]88 μm can identify potential leakers from non-leakers from the local Dwarf Galaxy Survey. Finally, we apply this diagnostic to known high-redshift galaxies and find that MACS 1149_JD1 at z = 9.1 is the most likely galaxy to be actively contributing to the reionization of the Universe.


2005 ◽  
Vol 201 ◽  
pp. 536-537
Author(s):  
Sukyoung. Yi ◽  
T. Brown ◽  
S. Heap ◽  
I. Hubeny ◽  
W. Landsman ◽  
...  

Pinning down the ages of high redshift galaxies is the most direct way of constraining the galaxy formation epoch. There has been a debate on the age of LBDS 53W091, a red galaxy at z=1.5. The discrepancy in the age estimates of various groups is due to the difference in the population synthesis model. However, there is generally a good agreement among popular models. Polishing the models and assessing their internal uncertainties are crucial in the analysis of high redshift galaxies.


2019 ◽  
Vol 15 (S341) ◽  
pp. 299-301
Author(s):  
Raphael Sadoun ◽  
Emilio Romano-Daz ◽  
Isaac Shlosman ◽  
Zheng Zheng

AbstractWe present results from high-resolution, zoom-in cosmological simulations to study the effect of feedback from galactic outflows on the physical and Lyα properties of high-redshift galaxies in highly overdense and normal environments at z >∼6. The Lyα properties have been obtained by post-processing the simulations with a Monte-Carlo radiative transfer (RT) code. Our results demonstrate that galactic outflows play an important role in regulating the growth of massive galaxies in overdense regions as well as the temperature and metallicity of the intergalactic medium. In particular, we find that galactic outflows are necessary to reproduce the observed Lyα luminosity functions as well as the apparent Lyα luminosity, line width and equivalent width distributions of luminous Lyα emitters at z ∼ 6.


2019 ◽  
Vol 15 (S352) ◽  
pp. 69-69
Author(s):  
Anne Hutter

AbstractReionization represents an important epoch in the history in the Universe, when the first stars and galaxies gradually ionize the neutral hydrogen in the intergalactic medium (IGM). Understanding the nature of the ionizing sources, the associated ionization of the IGM, and its impact on subsequent structure formation and galaxy evolution by means of radiative feedback effects, represent key outstanding questions in current astrophysics. High-redshift galaxy observations and simulations have significantly extended our knowledge on the nature of high-redshift galaxies. However, essential properties such as the escape fraction of ionizing photons from galaxies into the IGM and their dependency on galactic properties remain essentially unknown, but determine significantly the distribution and time evolution of the ionized regions during reionization. Analyzing this ionization topology by means of the neutral hydrogen sensitive 21cm signal with radio interferometers such as SKA offers a complementary and unique opportunity to determine the nature of these first galaxies. I will show results from a self-consistent semi-numerical model of galaxy evolution and reionization, and discuss the potential of inferring galactic properties with the 21cm signal as well as the impact of reionization on the high-redshift galaxy population and its evolution.


2016 ◽  
Vol 465 (3) ◽  
pp. 3134-3142 ◽  
Author(s):  
Chuanwu Liu ◽  
Simon J. Mutch ◽  
Gregory B. Poole ◽  
P. W. Angel ◽  
Alan R. Duffy ◽  
...  

2019 ◽  
Vol 487 (4) ◽  
pp. 5649-5665 ◽  
Author(s):  
Anna Zoldan ◽  
Gabriella De Lucia ◽  
Lizhi Xie ◽  
Fabio Fontanot ◽  
Michaela Hirschmann

ABSTRACTWe extend our previous work focused at z ∼ 0, studying the redshift evolution of galaxy dynamical properties using the state-of-the-art semi-analytic model GAEA (GAlaxy Evolution and Assembly): we show that the predicted size–mass relation for discy/star-forming and quiescent galaxies is in good agreement with observational estimates, up to z ∼ 2. Bulge-dominated galaxies have sizes that are offset low with respect to observational estimates, mainly due to our implementation of disc instability at high redshift. At large masses, both quiescent and bulge-dominated galaxies have sizes smaller than observed. We interpret this as a consequence of our most massive galaxies having larger gas masses than observed, and therefore being more affected by dissipation. We argue that a proper treatment of quasar-driven winds is needed to alleviate this problem. Our model compact galaxies have number densities in agreement with observational estimates and they form most of their stars in small and low angular momentum high-z haloes. GAEA predicts that a significant fraction of compact galaxies forming at high-z is bound to merge with larger structures at lower redshifts: therefore they are not the progenitors of normal-size passive galaxies at z = 0. Our model also predicts a stellar–halo size relation that is in good agreement with observational estimates. The ratio between stellar size and halo size is proportional to the halo spin and does not depend on stellar mass but for the most massive galaxies, where active galactic nucleus feedback leads to a significant decrease of the retention factor (from about 80 per cent to 20 per cent).


2012 ◽  
Vol 748 (1) ◽  
pp. 47 ◽  
Author(s):  
J. Melbourne ◽  
Benjamin F. Williams ◽  
Julianne J. Dalcanton ◽  
Philip Rosenfield ◽  
Léo Girardi ◽  
...  

1999 ◽  
Vol 186 ◽  
pp. 431-438
Author(s):  
M. Noguchi

A large number of high redshift galaxies observed with the Hubble Space Telescope (HST) show anomalous morphology and photometric properties, which may be an indication of evolutionary process in young galaxies. We show here by means of numerical simulations that the copious interstellar gas existing in the disks of rapidly collapsing protogalaxies can bring about these peculiarities. Gravitational instability in a gas-rich disk leads to the formation of massive gas clumps with a typical mass of 109M⊙. These subgalactic clumps make disk galaxy evolution a dynamically energetic and chaotic process, and give a natural explanation for peculiar morphology of high redshift galaxies. Moreover, the present model provides a new picture on the causal relationship between the emergence of quasar activities and the dynamical evolution of host galaxies. The clump-driven evolution model is also capable of explaining the correlations observed among present-day galaxies. Namely, the relative bulge dominance, existence of a thick disk, and a mass of the super-massive black hole situated at the galactic center should all be correlated positively. In contrast to their vigorous evolution in isolated state, primeval disk galaxies do not show any dramatic enhancement of activity or remarkable dynamical response in interaction with another galaxies.


2006 ◽  
Vol 2 (S235) ◽  
pp. 341-344
Author(s):  
Casey Papovich

AbstractI discuss current observational constraints on the star-formation and stellar-assembly histories of galaxies at high redshifts. The data on massive galaxies at z < 1 implies that their stellar populations formed at z>2, and that their morphological configuration was in place soon thereafter. Spitzer Space Telescope 24 μ observations indicate that a substantial fraction of massive galaxies at z ~ 1.5–3 have high IR luminosities, suggesting they are rapidly forming stars, accreting material onto supermassive black holes, or both. I compare how observations of these IR–active phases in the histories of massive galaxies constrain current galaxy–formation models.


Sign in / Sign up

Export Citation Format

Share Document