scholarly journals Terrestrial planet orbits in the habitable zones of exoplanetary system

2004 ◽  
Vol 202 ◽  
pp. 199-201
Author(s):  
B. W. Jones ◽  
P. N. Sleep

We have investigated whether terrestrial planets can exist in orbits in known exoplanetary systems such that life could have emerged on those planets. We have shown that Rho CrB and 47 UMa could have terrestrial planets in orbits that remain confined to their habitable zones for biologically significant lengths of time. We have also shown that the Gliese 876 and Ups And systems are very unlikely to have such orbits.

2006 ◽  
Vol 5 (3) ◽  
pp. 199-209 ◽  
Author(s):  
Martyn J. Fogg ◽  
Richard P. Nelson

About a fifth of the exoplanetary systems that have been discovered contain a so-called hot-Jupiter – a giant planet orbiting within 0.1 AU of the central star. Since these stars are typically of the F/G spectral type, the orbits of any terrestrial planets in their habitable zones at ~1 AU should be dynamically stable. However, because hot-Jupiters are thought to have formed in the outer regions of a protoplanetary disc, and to have then migrated through the terrestrial planet zone to their final location, it is uncertain whether terrestrial planets can actually grow and be retained in these systems. In this paper we review attempts to answer this question. Initial speculations, based on the assumption that migrating giant planets will clear planet-forming material from their swept zone, all concluded that hot-Jupiter systems should lack terrestrial planets. We show that this assumption may be incorrect, for when terrestrial planet formation and giant planet migration are simulated simultaneously, abundant solid material is predicted to remain from which terrestrial planet growth can resume.


2007 ◽  
Vol 3 (S249) ◽  
pp. 305-308
Author(s):  
Masahiro Ogihara ◽  
Shigeru Ida

AbstractWe have investigated accretion of terrestrial planets from planetesimals around M dwarfs through N-body simulations including the effect of tidal interaction with disk gas. Because of low luminosity of M dwarfs, habitable zones around them are located near the disk inner edge. Planetary embryos undergo type-I migration and pile up near the disk inner edge. We found that after repeated close scatterings and occasional collisions, three or four planets eventually remain in stable orbits in their mean motion resonances. Furthermore, large amount of water-rich planetesimals rapidly migrate to the terrestrial planet regions from outside of the snow line, so that formed planets in these regions have much more water contents than those around solar-type stars.


2007 ◽  
Vol 3 (S249) ◽  
pp. 499-502
Author(s):  
Jianghui JI ◽  
Lin LIU ◽  
Hiroshi KINOSHITA ◽  
Guangyu LI

AbstractWe perform numerical simulations to study the Habitable zones (HZs) and dynamical structure for Earth-mass planets in multiple planetary systems. For example, in the HD 69830 system, we extensively explore the planetary configuration of three Neptune-mass companions with one massive terrestrial planet residing in 0.07 AU ≤ a ≤ 1.20 AU, to examine the asteroid structure in this system. We underline that there are stable zones of at least 105 yr for low-mass terrestrial planets locating between 0.3 and 0.5 AU, and 0.8 and 1.2 AU with final eccentricities of e < 0.20. Moreover, we also find that the accumulation or depletion of the asteroid belt are also shaped by orbital resonances of the outer planets, for example, the asteroidal gaps at 2:1 and 3:2 mean motion resonances (MMRs) with Planet C, and 5:2 and 1:2 MMRs with Planet D. In a dynamical sense, the proper candidate regions for the existence of the potential terrestrial planets or HZs are 0.35 AU < a < 0.50 AU, and 0.80 AU < a < 1.00 AU for relatively low eccentricities, which makes sense to have the possible asteroidal structure in this system.


2007 ◽  
Vol 3 (S248) ◽  
pp. 238-243
Author(s):  
C. A. Beichman ◽  
S. C. Unwin ◽  
M. Shao ◽  
A. M. Tanner ◽  
J. H. Catanzarite ◽  
...  

AbstractSIM will search for planets with masses as small as the Earth's orbiting in the ‘habitable zones’ around more than 100 of the nearest stars and could discover many dozen if Earth-like planets are common. With a planned “Deep Survey” of 100–450 stars (depending on desired mass sensitivity) SIM will search for terrestrial planets around all of the candidate target stars for future direct detection missions such as Terrestrial Planet Finder and Darwin. SIM's “Broad Survey” of 2100 stars will characterize single and multiple-planet systems around a wide variety of stellar types, including many now inaccessible with the radial velocity technique. In particular, SIM will search for planets around young stars providing insights into how planetary systems are born and evolve with time.


2020 ◽  
Vol 494 (1) ◽  
pp. 1045-1057 ◽  
Author(s):  
G O Barbosa ◽  
O C Winter ◽  
A Amarante ◽  
A Izidoro ◽  
R C Domingos ◽  
...  

ABSTRACT This work investigates the possibility of close binary (CB) star systems having Earth-size planets within their habitable zones (HZs). First, we selected all known CB systems with confirmed planets (totaling 22 systems) to calculate the boundaries of their respective HZs. However, only eight systems had all the data necessary for the computation of HZ. Then, we numerically explored the stability within HZs for each one of the eight systems using test particles. From the results, we selected five systems that have stable regions inside HZs, namely Kepler-34,35,38,413, and 453. For these five cases of systems with stable regions in HZ, we perform a series of numerical simulations for planet formation considering discs composed of planetary embryos and planetesimals, with two distinct density profiles, in addition to the stars and host planets of each system. We found that in the case of the Kepler-34 and 453 systems, no Earth-size planet is formed within HZs. Although planets with Earth-like masses were formed in Kepler-453, they were outside HZ. In contrast, for the Kepler-35 and 38 systems, the results showed that potentially habitable planets are formed in all simulations. In the case of the Kepler-413system, in just one simulation, a terrestrial planet was formed within HZ.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 427-430
Author(s):  
Kevin J. Walsh

AbstractBuilding models capable of successfully matching the Terrestrial Planet's basic orbital and physical properties has proven difficult. Meanwhile, improved estimates of the nature of water-rich material accreted by the Earth, along with the timing of its delivery, have added even more constraints for models to match. While the outer Asteroid Belt seemingly provides a source for water-rich planetesimals, models that delivered enough of them to the still-forming Terrestrial Planets typically failed on other basic constraints - such as the mass of Mars.Recent models of Terrestrial Planet Formation have explored how the gas-driven migration of the Giant Planets can solve long-standing issues with the Earth/Mars size ratio. This model is forced to reproduce the orbital and taxonomic distribution of bodies in the Asteroid Belt from a much wider range of semimajor axis than previously considered. In doing so, it also provides a mechanism to feed planetesimals from between and beyond the Giant Planet formation region to the still-forming Terrestrial Planets.


2009 ◽  
Vol 5 (S265) ◽  
pp. 420-421
Author(s):  
João A. S. Amarante ◽  
Helio J. Rocha-Pinto

AbstractWe investigate the angular momentum distribution of known exoplanetary systems, as a function of the planetary mass, orbital semimajor axis and metallicity of the host star. We find exoplanets seems to be classified according to at least two ‘populations’, with respect to their angular momentum properties. This classification is independent on the composition of the planet and seems to be valid for both jovian and neptunian planets, and probably can be extrapolated to the terrestrial planets of the Solar System. We analyse these ‘populations’ considering the phenomenon of planetary migration.


Sign in / Sign up

Export Citation Format

Share Document