scholarly journals Diffraction Limited Imaging of High Redshift Galaxies with Adaptive Optics

2001 ◽  
Vol 205 ◽  
pp. 455-456 ◽  
Author(s):  
R.I. Davies ◽  
M. Lehnert ◽  
A.J. Baker ◽  
S. Rabien

The major cornerstone of future ground-based astronomy is imaging and spectroscopy at the diffraction limit using adaptive optics. To exploit the potential of current AO systems, we have begun a survey around bright stars to study intermediate redshift galaxies at high resolution. Using ALFA to reach the diffraction limit of the 3.5-m telescope at Calar Alto allows us to study the structure of distant galaxies in the near-infrared at scales of 100-150 pc for z=0.05 and at scales 1.0-1.5 kpc at z=1. In this contribution we present the initial results of this project, which hint at the exciting prospects possible with the resolution and sensitivity available using an AO camera on the 8-m class VLT.

2009 ◽  
Vol 706 (2) ◽  
pp. 1020-1035 ◽  
Author(s):  
Erin Mentuch ◽  
Roberto G. Abraham ◽  
Karl Glazebrook ◽  
Patrick J. McCarthy ◽  
Haojing Yan ◽  
...  

2019 ◽  
Vol 632 ◽  
pp. A98 ◽  
Author(s):  
Antonello Calabrò ◽  
Emanuele Daddi ◽  
Jérémy Fensch ◽  
Frédéric Bournaud ◽  
Anna Cibinel ◽  
...  

While the formation of stellar clumps in distant galaxies is usually attributed to gravitational violent disk instabilities, we show here that major mergers also represent a competitive mechanism to form bright clumps. Using ∼0.1″ resolution ACS F814W images in the entire COSMOS field, we measured the fraction of clumpy emission in 109 main sequence (MS) and 79 Herschel-detected starbursts (off-MS) galaxies at 0.5 < z < 0.9, representative of normal versus merger induced star-forming activity, respectively. We additionally identify merger samples from visual inspection and from Gini-M20 morphological parameters. Regardless of the merger criteria adopted, the clumpiness distribution of merging systems is different from that of normal isolated disks at a > 99.5% confidence level. The former reaches higher clumpiness values up to 20% of the total galaxy emission. We confirm the merger induced clumpiness enhancement with novel hydrodynamical simulations of colliding galaxies with gas fractions typical of z ∼ 0.7. Multi-wavelength images of three starbursts in the CANDELS field support the young nature of clumps, which are likely merger products rather than older preexisting structures. Finally, for a subset of 19 starbursts with existing near-infrared rest frame spectroscopy, we find that the clumpiness is mildly anti-correlated with the merger phase, which decreases toward final coalescence. Our result can explain recent ALMA detections of clumps in hyperluminous high-z starbursts, while normal objects are smooth. This work raises a question as to the role of mergers on the origin of clumps in high redshift galaxies in general.


2003 ◽  
Vol 587 (2) ◽  
pp. L79-L82 ◽  
Author(s):  
Marijn Franx ◽  
Ivo Labb ◽  
Gregory Rudnick ◽  
Pieter G. van Dokkum ◽  
Emanuele Daddi ◽  
...  

2005 ◽  
Vol 201 ◽  
pp. 395-399
Author(s):  
Matt. Griffin

Prospects for future satellite missions, operating in the FIR-mm wavelength region, to study the polarisation of the cosmic background radiation (CBR) and to carry out imaging and spectroscopy of high-redshift galaxies, are discussed. Full characterisation of the CBR polarisation offers the possibility of determining the energy scale of inflation and constraining the form of the inflaton potential. Current technology in FIR imaging and spectroscopy falls well short of matching capabilities in the optical/UV and the mm regions. Filling this gap is important to allow detailed examination of the physics and evolution of high-redshift galaxies, and will be possible with future FIR observatories which are now being studied.


2003 ◽  
Author(s):  
Ivo Labbe ◽  
Marijn Franx ◽  
Gregory Rudnick ◽  
Alan F. M. Moorwood ◽  
Natascha Foerster Schreiber ◽  
...  

1995 ◽  
Vol 273 (2) ◽  
pp. 513-516 ◽  
Author(s):  
A. J. Bunker ◽  
S. J. Warren ◽  
P. C. Hewett ◽  
D. L. Clements

2008 ◽  
Vol 4 (S254) ◽  
pp. 21-32
Author(s):  
Max Pettini

AbstractThe successful implementation of integral field near-infrared spectrographs fed by adaptive optics is providing unprecedented views of gas motions within galaxies at redshifts z = 2 − 3, when the universe was forming stars at its peak rate. A complex picture of galaxy kinematics is emerging, with inflows, rotation within sometimes extended and nearly always thick disks, mergers, and galaxy-wide outflows all contributing to the variety of patterns seen. On the computational side, simulations of galaxy formation have reached a level of sophistication which can not only reproduce many of the properties of today's galaxies, but also throws new light on high redshift galaxies which are too faint to be detected directly, such as those giving rise to quasar absorption lines. In this brief review, I summarise recent progress in these areas.


2012 ◽  
Vol 8 (S295) ◽  
pp. 94-94
Author(s):  
Lukas Lindroos ◽  
Kirsten K. Knudsen

AbstractRadio and mm observations play an important role in determining the star formation properties of high redshift galaxies. However, most galaxies at high redshift are too faint to be detected individually at these wavelengths. A way to study this population of galaxies is to use stacking. By averaging the emission of a large number of galaxies detected in optical or near infrared surveys, we can achieve statistical detection.We investigate methods for stacking data from interferometric surveys. Interferometry poses unique challenges in stacking due to the nature of imaging of this data. We have compared directly stacking the uv data with stacking of the imaged data, the latter being the typically used approach. Using simulated data, we find that uv-stacking may provide around 50% less noise and that image based stacking systematically loses around 10% of the flux.


Sign in / Sign up

Export Citation Format

Share Document