scholarly journals Molecular Clouds Observed by the EGRET Gamma-Ray Telescope

1997 ◽  
Vol 170 ◽  
pp. 22-24 ◽  
Author(s):  
Seth. W. Digel ◽  
Stanley D. Hunter ◽  
Reshmi Mukherjee ◽  
Eugéne J. de Geus ◽  
Isabelle A. Grenier ◽  
...  

EGRET, the high-energy γ-ray telescope on the Compton Gamma-Ray Observatory, has the sensitivity, angular resolution, and background rejection necessary to study diffuse γ-ray emission from the interstellar medium (ISM). High-energy γ rays produced in cosmic-ray (CR) interactions in the ISM can be used to determine the CR density and calibrate the CO line as a tracer of molecular mass. Dominant production mechanisms for γ rays of energies ∼30 MeV–30 GeV are the decay of pions produced in collisions of CR protons with ambient matter and Bremsstrahlung scattering of CR electrons.

1985 ◽  
Vol 106 ◽  
pp. 225-233
Author(s):  
Catherine J. Cesarsky

Gamma rays of energy in the range 30 MeV-several GeV, observed by the satellites SAS-2 and COS-B, are emitted in the interstellar medium as a result of interactions with gas of cosmic-ray nuclei in the GeV range (π° decay γ rays) and cosmic-ray electrons of energy > 30 MeV (bremsstrahlung γ rays). W. Hermsen has presented at this conference the γ ray maps of the Galaxy in three “colours” constructed by the COS-B collaboration; the information in such maps is supplemented by radio-continuum studies (see lecture by R. Beck), and is a useful tool for studying the distribution of gas, cosmic rays (c.r.) and magnetic fields in the Galaxy. The variables in this problem are many:large-scale (~ 1 kpc) and small-scale (~10 pc) distributions of c.r. nuclei, of c.r. electrons, of atomic and molecular hydrogen, of magnetic fields, fraction of the observed radiation due to localized sources, etc. Of these, only the distribution - or at least the column densities - of atomic hydrogen are determined in a reliable way. Estimates of the amount of molecular hydrogen can be derived from CO observations or from galaxy counts. The radio and gamma-ray data are not sufficient to disentangle all the other variables in a unique fashion, unless a number of assumptions are made (e.g. Paul et al. 1976). Still, the COS-B team has been able to show that :a) there is a correlation between the gamma-ray emission from local regions, as observed at intermediate latitudes, and the total column density of dust, as measured by galaxy counts. The simplest interpretation is that the density of c.r. nuclei and electrons is uniform within 500 pc of the sun, and that dust and gas are well mixed. Then, γ rays can be used as excellent tracers of local gas complexes (Lebrun et al. 1982, Strong et al. 1982).b) In the same way, the simplest interpretation of the γ-ray emission at energy > 300 MeV from the inner Galaxy, is that c.r. nuclei and electrons are distributed uniformly as well : there is no need for an enhanced density of c.r. in the 3–6 kpc ring; on the contrary, even assuming a uniform density of c.r., the γ-ray data are in conflict with the highest estimates of molecular hydrogen in the radio-astronomy literature (Mayer-Hasselwander et al. 1982).c) In the outer Galaxy, the gradient of c.r. which had become apparent in the early SAS-2 data can now, with COS-B data, be studied in three energy ranges. A gradient in the c.r. distribution is only required to explain the low-energy radiation, which is dominated by bremsstrahlung from relativistic electrons (Bloemen et al., in preparation).


2020 ◽  
Vol 497 (2) ◽  
pp. 2455-2468
Author(s):  
Michael W Toomey ◽  
Foteini Oikonomou ◽  
Kohta Murase

ABSTRACT We present a search for high-energy γ-ray emission from 566 Active Galactic Nuclei at redshift z > 0.2, from the 2WHSP catalogue of high-synchrotron peaked BL Lac objects with 8 yr of Fermi-LAT data. We focus on a redshift range where electromagnetic cascade emission induced by ultra-high-energy cosmic rays can be distinguished from leptonic emission based on the spectral properties of the sources. Our analysis leads to the detection of 160 sources above ≈5σ (TS ≥25) in the 1–300 GeV energy range. By discriminating significant sources based on their γ-ray fluxes, variability properties, and photon index in the Fermi-LAT energy range, and modelling the expected hadronic signal in the TeV regime, we select a list of promising sources as potential candidate ultra-high-energy cosmic ray emitters for follow-up observations by Imaging Atmospheric Cherenkov Telescopes.


1995 ◽  
Vol 151 ◽  
pp. 78-79
Author(s):  
I.Yu. Alekseev ◽  
N.N. Chalenko ◽  
V.P. Fomin ◽  
R.E. Gershberg ◽  
O.R. Kalekin ◽  
...  

During the 1994 coordinated observations of the red dwarf flare star EV Lac, the star was monitored in the very high energy (VHE) γ-ray range around 1012 eV with the Crimean ground-based γ-ray telescope GT-48. This telescope consists of two identical optical systems (Vladimirsky et al. 1994) which were directed in parallel on EV Lac.The detection principle of the VHE γ-rays is based on the Čerenkov radiation emitted by relativistic electrons and positrons. The latter are generated in the interaction of the γ-rays with nuclei in the Earth’s atmosphere that leads to an appearance of a shower of charged particles and γ-quanta. The duration of the Cherenkov radiation flash is very short, just about a few nanoseconds. The angular size of the shower is ∼ 1°. To detect such flashes we use an optical system with large area mirrors and a set of 37 photomultipliers (PMs) in the focal plane. Using the information from these PMs which are spaced hexagonally and correspond to a field of view of 2°.6 on the sky, we can obtain the image of an optical flash. The electronic device permits us to detect nanosecond flashes (40 ns exposure time and 12 μs readout dead-time).


1981 ◽  
Vol 94 ◽  
pp. 309-319 ◽  
Author(s):  
A. W. Wolfendale

It is shown that there is evidence favouring molecular clouds being sources of γ-rays, the fluxes being consistent with expectation for ambient cosmic rays interacting with the gas in the clouds for the clouds considered. An estimate is made of the fraction of the apparently diffuse γ-ray flux which comes from cosmic ray interactions in the I.S.M. as distinct from unresolved discrete sources. Finally, an examination is made of the possibility of gradients of cosmic ray intensity in the Galaxy.


1965 ◽  
Vol 23 ◽  
pp. 253-258
Author(s):  
M. Libber ◽  
S. N. Milford ◽  
M. S. Spergel

Collisions of high energy cosmic rays with intergalactic gas produce various secondaries, including neutral pions that decay into high energy γ rays. The Landau-Milekhin hydrodynamical model for proton-proton collisions is used to calculate the pion production spectrum corresponding to cosmic γ rays of energy above 10 Gev. A source function for these high energy γ rays in space is found by combining the pion production and decay spectra with the primary cosmic ray proton flux. The resulting γ ray spectrum follows a different power law than spectra based upon the usual assumption of a line spectrum for the pions in the center of mass system of the colliding protons. The high energy γ ray intensity in space is calculated for a simple model universe. By comparison with previous estimates for the proton photoproduction process, it is found that proton-proton and proton-photon collisions appear to contribute about the same order of magnitude to the intergalactic γ ray intensity above ∼1016 eV.


1998 ◽  
Vol 188 ◽  
pp. 273-274
Author(s):  
V.B. Bhatia ◽  
S. Mishra ◽  
N. Panchapakesan

The SAS 2 and COS B observations have established the existence of diffuse γ-rays in our Galaxy in various energy ranges. The diffuse radiation is attributed to the interaction of cosmic ray nuclei and electrons with the particles of interstellar atomic and molecular gas (via the decay of pions and bremsstrahlung, respectively). Inverse Compton scattering of interstellar photons by the high energy electrons of cosmic rays may also be contributing to this background. In addition some contribution may come from discrete sources of γ-rays.


1964 ◽  
Vol 42 (11) ◽  
pp. 2286-2331 ◽  
Author(s):  
G. T. Ewan ◽  
A. J. Tavendale

This paper describes the use of germanium lithium-drift p-i-n diodes as high-resolution γ-ray spectrometers. With these spectrometers we have obtained γ-ray resolutions of 2.05 keV at 122 keV, 4.0 keV at 1333 keV, and 5.5 keV at 2614 keV. Using the detectors as pair spectrometers for high-energy γ rays, we have obtained a resolution of 9.8 keV on a 7.6-MeV γ ray. The factors affecting the resolution of the detectors are discussed. Fano factors of ~0.4 have been observed. Efficiency curves are given for a 2.5 cm2 × 3.5 mm detector and for a 5 cm2 × 8 mm detector.The detectors have been used to make high-resolution studies of the complex γ-ray spectra from sources of 131Cs, 161Pm, 153Gd, 156Eu, 159Gd, 177Yb, and 226Ra. Results are reported for the energies and intensities of the γ rays observed in these studies.


1990 ◽  
Vol 140 ◽  
pp. 359-360
Author(s):  
Hitoshi Hanami

We have studied the high energy physical process related to the cosmic ray acceleration for SN1987A. The X-ray flare observed by Ginga satellite (Makino 1988) and TeV γ-rays reported by the JANZOS collaboration (Bond et al. 1988) occurred in January, 1988. These events may be explained by the interaction of the supernova ejecta with the surrounding cloud, which induces the thermalization of shocked material and the acceleration of cosmic ray on the reverse shock at the front of cloud. Especially, the soft X-ray emission from SN1987A is well described by the interaction model of the ejecta with the circumstellar medium (Masai et al. 1988, and Yoshida and Hanami 1988). It seems to be natural to consider that the origin of the γ-ray is connected with that of the X-ray flare, since they had occurred at same time. Then, we consider about the relation of this acceleration mechanism and the evolution scenario of the progenitor.


1984 ◽  
Vol 5 (4) ◽  
pp. 586-589 ◽  
Author(s):  
R. J. Protheroe ◽  
R. W. Clay

Recently, a new branch of astronomy has emerged following the detection of ultra-high energy (UHE) γ-ray emission from Cygnus X-3 by Samorski and Stamm (1983). This discovery was made using the extensive air shower (EAS) array of the University of Kiel, Germany. Such arrays are designed to detect EAS, the cascades of secondary particles (mainly electrons and protons), which are generated in the atmosphere by the interaction of cosmic ray nuclei of energy greater than ˜ 1015 eV. These arrays are also sensitive to EAS initiated by primary γ-rays and, depending on their design, have angular resolutions as good as the SAS-II and COS-B γ-ray telescopes which operated at ˜ 100 MeV energies. At present, there is no effective way to veto proton or nucleus-initiated EAS and so one must look for a significant excess of EAS from within a cone of resolution centred on a suspected source direction.


2020 ◽  
Vol 8 ◽  
Author(s):  
Xiang-Bing Wang ◽  
Guang-Yue Hu ◽  
Zhi-Meng Zhang ◽  
Yu-Qiu Gu ◽  
Bin Zhao ◽  
...  

Abstract In the laser plasma interaction of quantum electrodynamics (QED)-dominated regime, γ-rays are generated due to synchrotron radiation from high-energy electrons traveling in a strong background electromagnetic field. With the aid of 2D particle-in-cell code including QED physics, we investigate the preplasma effect on the γ-ray generation during the interaction between an ultraintense laser pulse and solid targets. We found that with the increasing preplasma scale length, the γ-ray emission is enhanced significantly and finally reaches a steady state. Meanwhile, the γ-ray beam becomes collimated. This shows that, in some cases, the preplasmas will be piled up acting as a plasma mirror in the underdense preplasma region, where the γ-rays are produced by the collision between the forward electrons and the reflected laser fields from the piled plasma. The piled plasma plays the same role as the usual reflection mirror made from a solid target. Thus, a single solid target with proper scale length preplasma can serve as a manufactural and robust γ-ray source.


Sign in / Sign up

Export Citation Format

Share Document