scholarly journals Gamma-ray counterparts of 2WHSP high-synchrotron-peaked BL Lac objects as possible signatures of ultra-high-energy cosmic ray emission

2020 ◽  
Vol 497 (2) ◽  
pp. 2455-2468
Author(s):  
Michael W Toomey ◽  
Foteini Oikonomou ◽  
Kohta Murase

ABSTRACT We present a search for high-energy γ-ray emission from 566 Active Galactic Nuclei at redshift z > 0.2, from the 2WHSP catalogue of high-synchrotron peaked BL Lac objects with 8 yr of Fermi-LAT data. We focus on a redshift range where electromagnetic cascade emission induced by ultra-high-energy cosmic rays can be distinguished from leptonic emission based on the spectral properties of the sources. Our analysis leads to the detection of 160 sources above ≈5σ (TS ≥25) in the 1–300 GeV energy range. By discriminating significant sources based on their γ-ray fluxes, variability properties, and photon index in the Fermi-LAT energy range, and modelling the expected hadronic signal in the TeV regime, we select a list of promising sources as potential candidate ultra-high-energy cosmic ray emitters for follow-up observations by Imaging Atmospheric Cherenkov Telescopes.

2019 ◽  
Vol 491 (2) ◽  
pp. 2771-2778 ◽  
Author(s):  
L Costamante

ABSTRACT BL Lac objects can be extreme in two ways: with their synchrotron emission, peaking beyond 1 keV in their spectral energy distribution, or with their gamma-ray emission, peaking at multi-TeV energies up to and beyond 10–20 TeV, like 1ES 0229+200. This second type of extreme BL Lacs – which we can name TeV-peaked BL Lacs – is not well explained by the usual synchrotron self-Compton scenarios for BL Lacs. These sources are also important as probes for the intergalactic diffuse infrared background and cosmic magnetic fields, as well as possible sites of production of ultra-high-energy cosmic rays and neutrinos. However, all these studies are hindered by their still very limited number. Here I propose a new, simple criterium to select the best candidates for TeV observations, specifically aimed at this peculiar type of BL Lac objects by combining X-ray, gamma-ray, and infrared data. It is based on the observation of a clustering towards a high X-ray to GeV gamma-ray flux ratio, and it does not rely on the radio flux or X-ray spectrum. This makes it suitable to find TeV-peaked sources also with very faint radio emission. Taking advantage of the Fermi all-sky gamma-ray survey applied to the ROMA-BZCAT and Sedentary Survey samples, I produce an initial list of 47 TeV-peaked candidates for observations with present and future air-Cherenkov telescopes.


2013 ◽  
Vol 9 (S304) ◽  
pp. 119-124
Author(s):  
Helene Sol

AbstractThe extragalactic very high energy (VHE) gamma-ray sky is dominated at the moment by more than fifty blazars detected by the present imaging atmospheric Cherenkov telescopes (IACT), with a majority (about 90%) of high-frequency peaked BL Lac objects (HBL) and a small number of low-frequency peaked and intermediate BL Lac objects (LBL and IBL) and flat spectrum radio quasars (FSRQ). A significant variability is often observed, with time scales from a few minutes to months and years. The spectral energy distribution (SED) of these blazars typically shows two bumps from the radio to the TeV range, which can usually be described by leptonic or hadronic processes. While elementary bricks of the VHE emission scenarios seem now reasonably well identified, a global picture of these sources, describing the geometry and dynamics of the VHE zone, is not yet available. Multiwavelength monitoring and global alert network will be important to better constrain the picture, especially with the perspective of CTA, a major project of the next generation in ground-based gamma-ray astronomy.


2016 ◽  
Vol 12 (S324) ◽  
pp. 251-252
Author(s):  
T. Terzić ◽  
A. Stamerra ◽  
F. D'Ammando ◽  
C. M. Raiteri ◽  
M. Villata ◽  
...  

The BL Lac object H1722+119 was observed in the very high energy band (VHE, E > 100 GeV) by the MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescopes (Aleksić et al. 2016a, b)) between 2013 May 17 and 22, following a state of high activity in the optical band measured by the KVA (Kungliga Vetenskapsakademien) telescope. Optical high states are often used to trigger MAGIC observations, which result in the VHE γ-ray signal detection (see e.g. Aleksić et al. 2015, Ahnen et al. 2016 and references therein).


1997 ◽  
Vol 170 ◽  
pp. 22-24 ◽  
Author(s):  
Seth. W. Digel ◽  
Stanley D. Hunter ◽  
Reshmi Mukherjee ◽  
Eugéne J. de Geus ◽  
Isabelle A. Grenier ◽  
...  

EGRET, the high-energy γ-ray telescope on the Compton Gamma-Ray Observatory, has the sensitivity, angular resolution, and background rejection necessary to study diffuse γ-ray emission from the interstellar medium (ISM). High-energy γ rays produced in cosmic-ray (CR) interactions in the ISM can be used to determine the CR density and calibrate the CO line as a tracer of molecular mass. Dominant production mechanisms for γ rays of energies ∼30 MeV–30 GeV are the decay of pions produced in collisions of CR protons with ambient matter and Bremsstrahlung scattering of CR electrons.


2019 ◽  
Vol 208 ◽  
pp. 14008
Author(s):  
V.G. Sinitsyna ◽  
V.Y. Sinitsyna

Cygnus X-3 binary system is a famous object studied over the wide range of electromagnetic spectrum. Early detections of ultra-high energy gamma-rays from Cygnus X-3 by Kiel, Havera Park and then by Akeno triggered the construction of several large air shower detectors. Also, Cygnus X-3 has been proposed to be one of the most powerful sources of charged cosmic ray particles in the Galaxy. The results of twenty-year observations of the Cyg X-3 binary at energies 800 GeV - 85 TeV are presented with images, spectra during periods of flaring activity and at low flux periods. The correlation of TeV flux increases with flaring activity at the lower energy range of X-ray and radio emission from the relativistic jets of Cygnus X-3 is found as well as 4.8-hour orbital modulation of TeV γ-ray intensity. Detected modulation of TeV γ-ray emission with orbit and important characteristics of Cyg X-3 such as the high luminosity of the companion star and the close orbit leads to an efficient generation of γ-ray emission through inverse Compton scattering in this object. The different type variability of very high-energy γ-emission and correlation of radiation activity in the wide energy range can provide essential information on the mechanism of particle production up to very high energies.


1986 ◽  
Vol 6 (3) ◽  
pp. 335-338 ◽  
Author(s):  
D. Ciampa ◽  
R. W. Clay ◽  
C. L. Corani ◽  
P. G. Edwards ◽  
J. R. Patterson

AbstractThe Buckland Park air shower array is being developed particularly for use as an ultra-high-energy gamma ray astronomy telescope. The properties of this instrument are described with an emphasis on improvements being made to its angular resolution. Some early data are presented to illustrate the way in which the data obtained will be used.


2010 ◽  
Vol 25 (20) ◽  
pp. 3953-3964
Author(s):  
A. GERANIOS ◽  
D. KOUTSOKOSTA ◽  
O. MALANDRAKI ◽  
H. ROSAKI-MAVROULI

Ultra-High Energy Cosmic Rays (UHECR) (E ≥ 5 × 1019 eV ) are detected through Extensive Air Showers that are created when a primary cosmic ray particle interacts with the atmosphere of the Earth. The energy of the primary particle can be estimated experimentally based on simulations. In this paper, we attempt to estimate the energy of UHECR gamma ray photons by applying a Monte Carlo simulation code and we compare the results with the ones derived in our previous papers for hadron initiated showers. The scenario of simulations is adapted to the P. Auger Observatory site.


Sign in / Sign up

Export Citation Format

Share Document