A rigorous approach for testing the constructionist hypotheses of brain function

2012 ◽  
Vol 35 (3) ◽  
pp. 148-149 ◽  
Author(s):  
Gopikrishna Deshpande ◽  
K. Sathian ◽  
Xiaoping Hu ◽  
Joseph A. Buckhalt

AbstractAlthough the target article provides strong evidence against the locationist view, evidence for the constructionist view is inconclusive, because co-activation of brain regions does not necessarily imply connectivity between them. We propose a rigorous approach wherein connectivity between co-activated regions is first modeled using exploratory Granger causality, and then confirmed using dynamic causal modeling or Bayesian modeling.

2012 ◽  
Vol 433-440 ◽  
pp. 5303-5307 ◽  
Author(s):  
T.N. Mane ◽  
M.B. Nagori ◽  
S.A. Agrawal

Brain, an amazing organ of human body comprises electrical signal that can be helpful for interaction between various brain regions. Functional Magnetic resonance Imaging (fMRI) is a specialized type of Magnetic Resonance Imaging scan. Though nature of fMRI data posses various challenges in the analysis. But, even after all challenges too, it is used as an effective method to diagnose various disease and the relationships between various brain regions. In this paper, we have proposed a model that will result a better fMRI data analysis. The effective interactions among the brain regions can be explored using dynamic causal modeling (DCM) that will help us to understand the functionality of brain up to some extent. Bayesian networks can be used for causal discovery purpose in support with markov blanket which can be evaluated with the help of evaluation metrics.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Ming-Chuan Tsai ◽  
Yue-Xin Cai ◽  
Chang-Dong Wang ◽  
Yi-Qing Zheng ◽  
Jia-Ling Ou ◽  
...  

Dynamic Causal Modeling (DCM) has been extended for the analysis of electroencephalography (EEG) based on a specific biophysical and neurobiological generative model for EEG. Comparing to methods that summarize neural activities with linear relationships, the generative model enables DCM to better describe how signals are generated and better reveal the underlying mechanism of the activities occurring in human brains. Since DCM provides us with an approach to the effective connectivity between brain areas, with exponential ranking, the abnormality of the observed signals can be further located to a specific brain region. In this paper, a combination of DCM and exponential ranking is proposed as a new method aiming at searching for the abnormal brain regions which are associated with chronic tinnitus.


Author(s):  
Jiali Huang ◽  
Sanghyun Choo ◽  
Zachary H. Pugh ◽  
Chang S. Nam

Objective Using dynamic causal modeling (DCM), we examined how credibility and reliability affected the way brain regions exert causal influence over each other—effective connectivity (EC)—in the context of trust in automation. Background Multiple brain regions of the central executive network (CEN) and default mode network (DMN) have been implicated in trust judgment. However, the neural correlates of trust judgment are still relatively unexplored in terms of the directed information flow between brain regions. Method Sixteen participants observed the performance of four computer algorithms, which differed in credibility and reliability, of the system monitoring subtask of the Air Force Multi-Attribute Task Battery (AF-MATB). Using six brain regions of the CEN and DMN commonly identified to be activated in human trust, a total of 30 (forward, backward, and lateral) connection models were developed. Bayesian model averaging (BMA) was used to quantify the connectivity strength among the brain regions. Results Relative to the high trust condition, low trust showed unique presence of specific connections, greater connectivity strengths from the prefrontal cortex, and greater network complexity. High trust condition showed no backward connections. Conclusion Results indicated that trust and distrust can be two distinctive neural processes in human–automation interaction—distrust being a more complex network than trust, possibly due to the increased cognitive load. Application The causal architecture of distributed brain regions inferred using DCM can help not only in the design of a balanced human–automation interface design but also in the proper use of automation in real-life situations.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhen-Zhen Ma ◽  
Ye-Chen Lu ◽  
Jia-Jia Wu ◽  
Xiang-Xin Xing ◽  
Xu-Yun Hua ◽  
...  

Background. Neuropathic pain after brachial plexus avulsion remained prevalent and intractable currently. However, the neuroimaging study about neural mechanisms or etiology was limited and blurred. Objective. This study is aimed at investigating the effect of electroacupuncture on effective connectivity and neural response in corticolimbic circuitries during implicit processing of nociceptive stimulus in rats with brachial plexus pain. Methods. An fMRI scan was performed in a total of 16 rats with brachial plexus pain, which was equally distributed into the model group and the electroacupuncture group. The analysis of task-dependent data determined pain-related activation in each group. Based on those results, several regions including AMY, S1, and h were recruited as ROI in dynamic causal modeling (DCM) analysis comparing evidence for different neuronal hypotheses describing the propagation of noxious stimuli in regions of interest and horizontal comparison of effective connections between the model and electroacupuncture groups. Results. In both groups, DCM revealed that noxious stimuli were most likely driven by the somatosensory cortex, with bidirectional propagation with the hypothalamus and amygdala and the interactions in them. Also, the 3-month intervention of acupuncture reduced effective connections of h-S1 and AMY-S1. Conclusions. We showed an evidence that a full connection model within the brain network of brachial plexus pain and electroacupuncture intervention reduces effective connectivity from h and AMY to S1. Our study for the first time explored the relationship of involved brain regions with dynamic causal modeling. It provided novel evidence for the feature of the organization of the cortical-limbic network and the alteration caused by acupuncture.


2021 ◽  
Vol 15 ◽  
Author(s):  
Andrew D. Snyder ◽  
Liangsuo Ma ◽  
Joel L. Steinberg ◽  
Kyle Woisard ◽  
Frederick G. Moeller

Dynamic causal modeling (DCM) is a method for analyzing functional magnetic resonance imaging (fMRI) and other functional neuroimaging data that provides information about directionality of connectivity between brain regions. A review of the neuropsychiatric fMRI DCM literature suggests that there may be a historical trend to under-report self-connectivity (within brain regions) compared to between brain region connectivity findings. These findings are an integral part of the neurologic model represented by DCM and serve an important neurobiological function in regulating excitatory and inhibitory activity between regions. We reviewed the literature on the topic as well as the past 13 years of available neuropsychiatric DCM literature to find an increasing (but still, perhaps, and inadequate) trend in reporting these results. The focus of this review is fMRI as the majority of published DCM studies utilized fMRI and the interpretation of the self-connectivity findings may vary across imaging methodologies. About 25% of articles published between 2007 and 2019 made any mention of self-connectivity findings. We recommend increased attention toward the inclusion and interpretation of self-connectivity findings in DCM analyses in the neuropsychiatric literature, particularly in forthcoming effective connectivity studies of substance use disorders.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Arian Ashourvan ◽  
Preya Shah ◽  
Adam Pines ◽  
Shi Gu ◽  
Christopher W. Lynn ◽  
...  

AbstractA major challenge in neuroscience is determining a quantitative relationship between the brain’s white matter structural connectivity and emergent activity. We seek to uncover the intrinsic relationship among brain regions fundamental to their functional activity by constructing a pairwise maximum entropy model (MEM) of the inter-ictal activation patterns of five patients with medically refractory epilepsy over an average of ~14 hours of band-passed intracranial EEG (iEEG) recordings per patient. We find that the pairwise MEM accurately predicts iEEG electrodes’ activation patterns’ probability and their pairwise correlations. We demonstrate that the estimated pairwise MEM’s interaction weights predict structural connectivity and its strength over several frequencies significantly beyond what is expected based solely on sampled regions’ distance in most patients. Together, the pairwise MEM offers a framework for explaining iEEG functional connectivity and provides insight into how the brain’s structural connectome gives rise to large-scale activation patterns by promoting co-activation between connected structures.


2021 ◽  
Author(s):  
Stefan Frässle ◽  
Samuel J. Harrison ◽  
Jakob Heinzle ◽  
Brett A. Clementz ◽  
Carol A. Tamminga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document