On numbers having finite beta-expansions

2009 ◽  
Vol 29 (5) ◽  
pp. 1659-1668 ◽  
Author(s):  
TOUFIK ZAÏMI

AbstractLet β be a real number greater than one, and let ℤβ be the set of real numbers which have a zero fractional part when expanded in base β. We prove that β is a Pisot number when the set ℕβ−ℕβ−ℕβ is discrete, where ℕβ=ℤβ∩[0,∞[. We also give partial answers to some related open problems, and in particular, we show that β is a Pisot number when a sum ℤβ+⋯+ℤβ is a Meyer set.

2011 ◽  
Vol 54 (1) ◽  
pp. 127-132 ◽  
Author(s):  
TOUFIK ZAIMI

AbstractLet θ be a real number greater than 1, and let (()) be the fractional part function. Then, θ is said to be a Z-number if there is a non-zero real number λ such that ((λθn)) < for all n ∈ ℕ. Dubickas (A. Dubickas, Even and odd integral parts of powers of a real number, Glasg. Math. J., 48 (2006), 331–336) showed that strong Pisot numbers are Z-numbers. Here it is proved that θ is a strong Pisot number if and only if there exists λ ≠ 0 such that ((λα)) < for all$\alpha \in \{ \theta ^{n}\mid n\in \mathbb{N}\} \cup \{ \sum\nolimits_{n=0}^{N}\theta ^{n}\mid \mathit{\}N\in \mathbb{N}\}$. Also, the following characterisation of Pisot numbers among real numbers greater than 1 is shown: θ is a Pisot number ⇔ ∃ λ ≠ 0 such that$\Vert \lambda \alpha \Vert <\frac{1}{% 3}$for all$\alpha \in \{ \sum\nolimits_{n=0}^{N}a_{n}\theta ^{n}\mid$an ∈ {0,1}, N ∈ ℕ}, where ‖λα‖ = min{((λα)), 1 − ((λα))}.


2003 ◽  
Vol 93 (2) ◽  
pp. 268
Author(s):  
H. Kamarul Haili ◽  
R. Nair

Let $(\lambda_n)_{n\geq 0}$ be a sequence of real numbers such that there exists $\delta > 0$ such that $|\lambda_{n+1} - \lambda_n| \geq \delta , n = 0,1,...$. For a real number $y$ let $\{ y \}$ denote its fractional part. Also, for the real number $x$ let $D(N,x)$ denote the discrepancy of the numbers $\{ \lambda _0 x \}, \cdots , \{ \lambda _{N-1} x \}$. We show that given $\varepsilon > 0$, 9774 D(N,x) = o ( N^{-\frac{1}{2}}(\log N)^{\frac{3}{2} + \varepsilon})9774 almost everywhere with respect to Lebesgue measure.


2021 ◽  
Vol 56 (1) ◽  
pp. 3-19
Author(s):  
I.V. Zamrii ◽  
V.V. Shkapa ◽  
H.M. Vlasyk

In the paper we were studied encoding of fractional part of a real number with an infinite alphabet (set of digits) coinciding with the set of non-negative integers. The geometry of this encoding is generated by $Q_3$-representation of real numbers, which is a generalization of the classical ternary representation. The new representation has infinite alphabet, zero surfeit and can be efficiently used for specifying mathematical objects with fractal properties. We have been studied the functions that store the "tails" of $\overline{Q_3}$-representation of numbers and the set of such functions,some metric problems and some problems of probability theory are connected with $\overline{Q_3}$-representation.


2007 ◽  
Vol Vol. 9 no. 1 (Analysis of Algorithms) ◽  
Author(s):  
Julien Bernat

Analysis of Algorithms International audience The β-numeration, born with the works of Rényi and Parry, provides a generalization of the notions of integers, decimal numbers and rational numbers by expanding real numbers in base β, where β>1 is not an integer. One of the main differences with the case of numeration in integral base is that the sets which play the role of integers, decimal numbers and rational numbers in base β are not stable under addition or multiplication. In particular, a fractional part may appear when one adds or multiplies two integers in base β. When β is a Pisot number, which corresponds to the most studied case, the lengths of the finite fractional parts that may appear when one adds or multiplies two integers in base β are bounded by constants which only depend on β. We prove that, for any Perron number β, the set of finite or ultimately periodic fractional parts of the sum, or the product, of two integers in base β is finite. Additionally, we prove that it is possible to compute this set for the case of addition when β is a Parry number. As a consequence, we deduce that, when β is a Perron number, there exist bounds, which only depend on β, for the lengths of the finite fractional parts that may appear when one adds or multiplies two integers in base β. Moreover, when β is a Parry number, the bound associated with the case of addition can be explicitly computed.


2018 ◽  
Vol 7 (1) ◽  
pp. 77-83
Author(s):  
Rajendra Prasad Regmi

There are various methods of finding the square roots of positive real number. This paper deals with finding the principle square root of positive real numbers by using Lagrange’s and Newton’s interpolation method. The interpolation method is the process of finding the values of unknown quantity (y) between two known quantities.


2009 ◽  
Vol 51 (2) ◽  
pp. 243-252
Author(s):  
ARTŪRAS DUBICKAS

AbstractLetx0<x1<x2< ⋅⋅⋅ be an increasing sequence of positive integers given by the formulaxn=⌊βxn−1+ γ⌋ forn=1, 2, 3, . . ., where β > 1 and γ are real numbers andx0is a positive integer. We describe the conditions on integersbd, . . .,b0, not all zero, and on a real number β > 1 under which the sequence of integerswn=bdxn+d+ ⋅⋅⋅ +b0xn,n=0, 1, 2, . . ., is bounded by a constant independent ofn. The conditions under which this sequence can be ultimately periodic are also described. Finally, we prove a lower bound on the complexity function of the sequenceqxn+1−pxn∈ {0, 1, . . .,q−1},n=0, 1, 2, . . ., wherex0is a positive integer,p>q> 1 are coprime integers andxn=⌈pxn−1/q⌉ forn=1, 2, 3, . . . A similar speculative result concerning the complexity of the sequence of alternatives (F:x↦x/2 orS:x↦(3x+1)/2) in the 3x+1 problem is also given.


10.37236/9475 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Colin Defant ◽  
James Propp

Given a finite set $X$ and a function $f:X\to X$, we define the \emph{degree of noninvertibility} of $f$ to be $\displaystyle\deg(f)=\frac{1}{|X|}\sum_{x\in X}|f^{-1}(f(x))|$. This is a natural measure of how far the function $f$ is from being bijective. We compute the degrees of noninvertibility of some specific discrete dynamical systems, including the Carolina solitaire map, iterates of the bubble sort map acting on permutations, bubble sort acting on multiset permutations, and a map that we call "nibble sort." We also obtain estimates for the degrees of noninvertibility of West's stack-sorting map and the Bulgarian solitaire map. We then turn our attention to arbitrary functions and their iterates. In order to compare the degree of noninvertibility of an arbitrary function $f:X\to X$ with that of its iterate $f^k$, we prove that \[\max_{\substack{f:X\to X\\ |X|=n}}\frac{\deg(f^k)}{\deg(f)^\gamma}=\Theta(n^{1-1/2^{k-1}})\] for every real number $\gamma\geq 2-1/2^{k-1}$. We end with several conjectures and open problems.  


Author(s):  
Arthur Benjamin ◽  
Gary Chartrand ◽  
Ping Zhang

This chapter considers Hamiltonian graphs, a class of graphs named for nineteenth-century physicist and mathematician Sir William Rowan Hamilton. In 1835 Hamilton discovered that complex numbers could be represented as ordered pairs of real numbers. That is, a complex number a + b i (where a and b are real numbers) could be treated as the ordered pair (a, b). Here the number i has the property that i² = -1. Consequently, while the equation x² = -1 has no real number solutions, this equation has two solutions that are complex numbers, namely i and -i. The chapter first examines Hamilton's icosian calculus and Icosian Game, which has a version called Traveller's Dodecahedron or Voyage Round the World, before concluding with an analysis of the Knight's Tour Puzzle, the conditions that make a given graph Hamiltonian, and the Traveling Salesman Problem.


2018 ◽  
Vol 14 (07) ◽  
pp. 1903-1918
Author(s):  
Wenxu Ge ◽  
Huake Liu

Let [Formula: see text] be an integer with [Formula: see text], and [Formula: see text] be any real number. Suppose that [Formula: see text] are nonzero real numbers, not all the same sign and [Formula: see text] is irrational. It is proved that the inequality [Formula: see text] has infinitely many solutions in primes [Formula: see text], where [Formula: see text], and [Formula: see text] for [Formula: see text]. This generalizes earlier results. As application, we get that the integer parts of [Formula: see text] are prime infinitely often for primes [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document