scholarly journals Quantifying Noninvertibility in Discrete Dynamical Systems

10.37236/9475 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Colin Defant ◽  
James Propp

Given a finite set $X$ and a function $f:X\to X$, we define the \emph{degree of noninvertibility} of $f$ to be $\displaystyle\deg(f)=\frac{1}{|X|}\sum_{x\in X}|f^{-1}(f(x))|$. This is a natural measure of how far the function $f$ is from being bijective. We compute the degrees of noninvertibility of some specific discrete dynamical systems, including the Carolina solitaire map, iterates of the bubble sort map acting on permutations, bubble sort acting on multiset permutations, and a map that we call "nibble sort." We also obtain estimates for the degrees of noninvertibility of West's stack-sorting map and the Bulgarian solitaire map. We then turn our attention to arbitrary functions and their iterates. In order to compare the degree of noninvertibility of an arbitrary function $f:X\to X$ with that of its iterate $f^k$, we prove that \[\max_{\substack{f:X\to X\\ |X|=n}}\frac{\deg(f^k)}{\deg(f)^\gamma}=\Theta(n^{1-1/2^{k-1}})\] for every real number $\gamma\geq 2-1/2^{k-1}$. We end with several conjectures and open problems.  


2003 ◽  
Vol 13 (07) ◽  
pp. 1627-1647 ◽  
Author(s):  
F. Balibrea ◽  
L. Reich ◽  
J. Smítal

The aim of this paper is to give an account of some problems considered in the past years in the setting of Discrete Dynamical Systems and Iterative Functional Equations, some new research directions and also state some open problems.



2016 ◽  
Vol 24 ◽  
pp. 95
Author(s):  
V.I. Ruban ◽  
A.A. Rudenko

For discrete dynamical systems with a finite number of states, we obtain order of time complexity ascension of algorithms of their full analysis.





Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 616
Author(s):  
Marek Berezowski ◽  
Marcin Lawnik

Research using chaos theory allows for a better understanding of many phenomena modeled by means of dynamical systems. The appearance of chaos in a given process can lead to very negative effects, e.g., in the construction of bridges or in systems based on chemical reactors. This problem is important, especially when in a given dynamic process there are so-called hidden attractors. In the scientific literature, we can find many works that deal with this issue from both the theoretical and practical points of view. The vast majority of these works concern multidimensional continuous systems. Our work shows these attractors in discrete systems. They can occur in Newton’s recursion and in numerical integration.





1993 ◽  
Vol 03 (02) ◽  
pp. 293-321 ◽  
Author(s):  
JÜRGEN WEITKÄMPER

Real cellular automata (RCA) are time-discrete dynamical systems on ℝN. Like cellular automata they can be obtained from discretizing partial differential equations. Due to their structure RCA are ideally suited to implementation on parallel computers with a large number of processors. In a way similar to the Hénon mapping, the system we consider here embeds the logistic mapping in a system on ℝN, N>1. But in contrast to the Hénon system an RCA in general is not invertible. We present some results about the bifurcation structure of such systems, mostly restricting ourselves, due to the complexity of the problem, to the two-dimensional case. Among others we observe cascades of cusp bifurcations forming generalized crossroad areas and crossroad areas with the flip curves replaced by Hopf bifurcation curves.



1987 ◽  
Vol 20 (5) ◽  
pp. 75-80 ◽  
Author(s):  
S. Tanaka ◽  
T. Okita ◽  
P.C. Müller


2013 ◽  
Vol 4 (2) ◽  
pp. 44-48
Author(s):  
Rosário D. Laureano


Sign in / Sign up

Export Citation Format

Share Document