scholarly journals Arithmetics in β-numeration

2007 ◽  
Vol Vol. 9 no. 1 (Analysis of Algorithms) ◽  
Author(s):  
Julien Bernat

Analysis of Algorithms International audience The β-numeration, born with the works of Rényi and Parry, provides a generalization of the notions of integers, decimal numbers and rational numbers by expanding real numbers in base β, where β>1 is not an integer. One of the main differences with the case of numeration in integral base is that the sets which play the role of integers, decimal numbers and rational numbers in base β are not stable under addition or multiplication. In particular, a fractional part may appear when one adds or multiplies two integers in base β. When β is a Pisot number, which corresponds to the most studied case, the lengths of the finite fractional parts that may appear when one adds or multiplies two integers in base β are bounded by constants which only depend on β. We prove that, for any Perron number β, the set of finite or ultimately periodic fractional parts of the sum, or the product, of two integers in base β is finite. Additionally, we prove that it is possible to compute this set for the case of addition when β is a Parry number. As a consequence, we deduce that, when β is a Perron number, there exist bounds, which only depend on β, for the lengths of the finite fractional parts that may appear when one adds or multiplies two integers in base β. Moreover, when β is a Parry number, the bound associated with the case of addition can be explicitly computed.

2011 ◽  
Vol 54 (1) ◽  
pp. 127-132 ◽  
Author(s):  
TOUFIK ZAIMI

AbstractLet θ be a real number greater than 1, and let (()) be the fractional part function. Then, θ is said to be a Z-number if there is a non-zero real number λ such that ((λθn)) < for all n ∈ ℕ. Dubickas (A. Dubickas, Even and odd integral parts of powers of a real number, Glasg. Math. J., 48 (2006), 331–336) showed that strong Pisot numbers are Z-numbers. Here it is proved that θ is a strong Pisot number if and only if there exists λ ≠ 0 such that ((λα)) < for all$\alpha \in \{ \theta ^{n}\mid n\in \mathbb{N}\} \cup \{ \sum\nolimits_{n=0}^{N}\theta ^{n}\mid \mathit{\}N\in \mathbb{N}\}$. Also, the following characterisation of Pisot numbers among real numbers greater than 1 is shown: θ is a Pisot number ⇔ ∃ λ ≠ 0 such that$\Vert \lambda \alpha \Vert <\frac{1}{% 3}$for all$\alpha \in \{ \sum\nolimits_{n=0}^{N}a_{n}\theta ^{n}\mid$an ∈ {0,1}, N ∈ ℕ}, where ‖λα‖ = min{((λα)), 1 − ((λα))}.


2009 ◽  
Vol 29 (5) ◽  
pp. 1659-1668 ◽  
Author(s):  
TOUFIK ZAÏMI

AbstractLet β be a real number greater than one, and let ℤβ be the set of real numbers which have a zero fractional part when expanded in base β. We prove that β is a Pisot number when the set ℕβ−ℕβ−ℕβ is discrete, where ℕβ=ℤβ∩[0,∞[. We also give partial answers to some related open problems, and in particular, we show that β is a Pisot number when a sum ℤβ+⋯+ℤβ is a Meyer set.


2010 ◽  
Vol DMTCS Proceedings vol. AM,... (Proceedings) ◽  
Author(s):  
Thomas Fernique ◽  
Damien Regnault

International audience This paper introduces a Markov process inspired by the problem of quasicrystal growth. It acts over dimer tilings of the triangular grid by randomly performing local transformations, called $\textit{flips}$, which do not increase the number of identical adjacent tiles (this number can be thought as the tiling energy). Fixed-points of such a process play the role of quasicrystals. We are here interested in the worst-case expected number of flips to converge towards a fixed-point. Numerical experiments suggest a $\Theta (n^2)$ bound, where $n$ is the number of tiles of the tiling. We prove a $O(n^{2.5})$ upper bound and discuss the gap between this bound and the previous one. We also briefly discuss the average-case.


1964 ◽  
Vol 11 (6) ◽  
pp. 449-450

In the height of autumn, the City of Peachtree Street in the Peach Tree State will be the locale of the Atlanta Meeting of the National Council of Teachers of Mathematics. This event, a first of its kind for Atlanta and for Georgia, is designed to attract persons interested in mathematics, kindergarten to the college level. From geometry in the kindergarten to probability and statistics in high school; from the rational numbers in the elementary school to applications of mathematics in the senior high school, from the role of reading to the role of the administrator in improving mathematics education; in short, whatever aspects of mathematics on the school and college levels fascinate one will be presented during the Atlanta Meeting, November 19-21, 1964.


1969 ◽  
Vol 62 (3) ◽  
pp. 220-221
Author(s):  
Philip Peak

One of the basic principles we follow in our teaching is to relate new ideas with old ideas. Dr. Forbes has done just this in his article about extending the concept of rational numbers to real numbers. He points out how this extension cannot follow the same pattern as that of extensions positive to negative integers or from integers to rationals. If we look to a definition for motivating the extension we at best can only say, “Some polynomial equations have no rational number solutions and do have some real number solutions.” We might use least-upperbound idea, or we might try motivating through nonperiodic infinite decimals. However, Dr. Forbes rejects all of these and makes the tie-in through a geometric approach.


ISRN Algebra ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
Elliot Benjamin

We demonstrate that there are infinitely many real numbers constructible by marked ruler and compass which are unique real roots of irreducible quintic polynomials over the field of rational numbers. This result can be viewed as a generalization of the historical open question of the constructibility by marked ruler and compass of real 5th roots of rational numbers. We obtain our results through marked ruler and compass constructions involving the intersection of conchoids and circles, and the application of number theoretic divisibility criteria.


2008 ◽  
Vol 145 (3) ◽  
pp. 527-548 ◽  
Author(s):  
JULIEN BARRAL ◽  
STÉPHANE SEURET

AbstractWe are interested in two properties of real numbers: the first one is the property of being well-approximated by some dense family of real numbers {xn}n≥1, such as rational numbers and more generally algebraic numbers, and the second one is the property of having given digit frequencies in some b-adic expansion.We combine these two ways of classifying the real numbers, in order to provide a finer classification. We exhibit sets S of points x which are approximated at a given rate by some of the {xn}n, those xn being selected according to their digit frequencies. We compute the Hausdorff dimension of any countable intersection of such sets S, and prove that these sets enjoy the so-called large intersection property.


Sign in / Sign up

Export Citation Format

Share Document