Topological entropy of semi-dispersing billiards

1998 ◽  
Vol 18 (4) ◽  
pp. 791-805 ◽  
Author(s):  
D. BURAGO ◽  
S. FERLEGER ◽  
A. KONONENKO

In this paper we continue to explore the applications of the connections between singular Riemannian geometry and billiard systems that were first used in [6] to prove estimates on the number of collisions in non-degenerate semi-dispersing billiards.In this paper we show that the topological entropy of a compact non-degenerate semi-dispersing billiard on any manifold of non-positive sectional curvature is finite. Also, we prove exponential estimates on the number of periodic points (for the first return map to the boundary of a simple-connected billiard table) and the number of periodic trajectories (for the billiard flow). In \S5 we prove some estimates for the topological entropy of Lorentz gas.

1998 ◽  
Vol 18 (2) ◽  
pp. 303-319 ◽  
Author(s):  
D. BURAGO ◽  
S. FERLEGER ◽  
A. KONONENKO

We summarize the results of several recent papers, together with a few new results, which rely on a connection between semi-dispersing billiards and non-regular Riemannian geometry. We use this connection to solve several open problems about the existence of uniform estimates on the number of collisions, topological entropy and periodic trajectories of such billiards.


2010 ◽  
Vol 31 (1) ◽  
pp. 49-75 ◽  
Author(s):  
E. GLASNER ◽  
M. LEMAŃCZYK ◽  
B. WEISS

AbstractWe introduce a functor which associates to every measure-preserving system (X,ℬ,μ,T) a topological system $(C_2(\mu ),\tilde {T})$ defined on the space of twofold couplings of μ, called the topological lens of T. We show that often the topological lens ‘magnifies’ the basic measure dynamical properties of T in terms of the corresponding topological properties of $\tilde {T}$. Some of our main results are as follows: (i) T is weakly mixing if and only if $\tilde {T}$ is topologically transitive (if and only if it is topologically weakly mixing); (ii) T has zero entropy if and only if $\tilde {T}$ has zero topological entropy, and T has positive entropy if and only if $\tilde {T}$ has infinite topological entropy; (iii) for T a K-system, the topological lens is a P-system (i.e. it is topologically transitive and the set of periodic points is dense; such systems are also called chaotic in the sense of Devaney).


1995 ◽  
Vol 05 (05) ◽  
pp. 1351-1355
Author(s):  
VLADIMIR FEDORENKO

We give a characterization of complex and simple interval maps and circle maps (in the sense of positive or zero topological entropy respectively), formulated in terms of the description of the dynamics of the map on its chain recurrent set. We also describe the behavior of complex maps on their periodic points.


2002 ◽  
Vol 74 (4) ◽  
pp. 589-597 ◽  
Author(s):  
FUQUAN FANG

Let M be a simply connected compact 6-manifold of positive sectional curvature. If the identity component of the isometry group contains a simple Lie subgroup, we prove that M is diffeomorphic to one of the five manifolds listed in Theorem A.


2014 ◽  
Vol 150 (12) ◽  
pp. 2143-2183 ◽  
Author(s):  
Matthew Strom Borman ◽  
Mark McLean

AbstractThe width of a Lagrangian is the largest capacity of a ball that can be symplectically embedded into the ambient manifold such that the ball intersects the Lagrangian exactly along the real part of the ball. Due to Dimitroglou Rizell, finite width is an obstruction to a Lagrangian admitting an exact Lagrangian cap in the sense of Eliashberg–Murphy. In this paper we introduce a new method for bounding the width of a Lagrangian$Q$by considering the Lagrangian Floer cohomology of an auxiliary Lagrangian$L$with respect to a Hamiltonian whose chords correspond to geodesic paths in$Q$. This is formalized as a wrapped version of the Floer–Hofer–Wysocki capacity and we establish an associated energy–capacity inequality with the help of a closed–open map. For any orientable Lagrangian$Q$admitting a metric of non-positive sectional curvature in a Liouville manifold, we show the width of$Q$is bounded above by four times its displacement energy.


2018 ◽  
Vol 2020 (5) ◽  
pp. 1346-1365 ◽  
Author(s):  
Jason DeVito ◽  
Ezra Nance

Abstract A Riemannian manifold is said to be almost positively curved if the set of points for which all two-planes have positive sectional curvature is open and dense. We show that the Grassmannian of oriented two-planes in $\mathbb{R}^{7}$ admits a metric of almost positive curvature, giving the first example of an almost positively curved metric on an irreducible compact symmetric space of rank greater than 1. The construction and verification rely on the Lie group $\mathbf{G}_{2}$ and the octonions, so do not obviously generalize to any other Grassmannians.


Sign in / Sign up

Export Citation Format

Share Document