scholarly journals Spectra Due to Dielectronic Recombination

1985 ◽  
Vol 19 (2) ◽  
pp. 158-158
Author(s):  
J Dubau ◽  
F Bely-Dubau

Dielectronic recombination (DR) is an electron-ion process particularly effective in high temperature plasmas such as those observed in the Solar Corona, Supernovae remnants in fusion plasmas (Tokamak and laser produced plasmas). This process is a resonant capture process of projectile electrons by a target ion as one of the target electron is excited, thereby forming an intermediate autionising state which can decay radiatively to a singly excited state. DR plays an important role on the establishment of ionisation equilibrium in the plasma and is also responsible for spectral lines appearing as satellites of the resonance lines of the target ion. The analysis and interpretation of such satellite lines in terms of plasma diagnostics has been widely used in soft X-ray spectroscopy during the last decade, and has given reliable estimates of the physical parameters of the plasma (electron and ion temperatures and densities). In the case of H-like and He-like resonance lines, high resolution spectra have been obtained in Tokamak for Z = 14 - 28 and most of the satellites have been clearly identified. To help the reader to go further we give some references of solar studies 2, 3, 4, 0, Tokamak 6, 7, laser plasma 8, 9.

1996 ◽  
Vol 54 (5) ◽  
pp. 463-470 ◽  
Author(s):  
I Murakami ◽  
T Kato

1989 ◽  
Vol 7 (3) ◽  
pp. 483-486 ◽  
Author(s):  
J. Fujita ◽  
S. Morita ◽  
M. Sakurai

We have developed medium and high resolution X-ray crystal spectrometers for measurements of charge state distributions of impurity ions, density of suprathermal electrons and ion temperature in magnetically confined plasmas. The techniques utilizing these spectrometers are, in principle, applicable to laser produced plasmas, especially in their expanding phase. The role of X-ray spectroscopy to produce useful data for atomic physics as well as for plasma diagnostics is emphasized. A beam-line has been designed and installed to the Ultraviolet Synchrotron Radiation Facility (UVSOR) at IMS, Okazaki, for the purpose of establishing calibration techniques for optical components, detectors and spectrometers in the range from ultraviolet to soft X ray for plasma diagnostics. Characteristics of the beam and its application to the study of interaction between synchrotron radiation and hot dense plasmas are described. Synchrotron radiation can replace the dye laser which has so far been used as a light source in the laser-induced fluorescence method to obtain population density of specified levels in a plasma.


2001 ◽  
Vol T92 (1) ◽  
pp. 307-310 ◽  
Author(s):  
R. Neu ◽  
K. B. Fournier ◽  
D. Bolshukhin ◽  
R. Dux
Keyword(s):  

1987 ◽  
Vol 322 ◽  
pp. 1044 ◽  
Author(s):  
Kenneth R. Lang ◽  
Robert F. Willson ◽  
Kermit L. Smith ◽  
Keith T. Strong

1990 ◽  
Vol 115 ◽  
pp. 1-10 ◽  
Author(s):  
John C. Raymond

AbstractThe spectral lines which dominate the X-ray emission of hot, optically thin astrophysical plasmas reflect the elemental abundances, temperature distribution, and other physical parameters of the emitting gas. The accuracy and level of detail with which these parameters can be inferred are limited by the measurement uncertainties and uncertainties in atomic rates used to compute the model spectrum. This paper discusses the relative importance and the likely uncertainties in the various atomic rates and the likely uncertainties in the overall ionization balance and spectral line emissivities predicted by the computer codes currently used to fit X-ray spectral data.


Author(s):  
Martin Peckerar ◽  
Anastasios Tousimis

Solid state x-ray sensing systems have been used for many years in conjunction with scanning and transmission electron microscopes. Such systems conveniently provide users with elemental area maps and quantitative chemical analyses of samples. Improvements on these tools are currently sought in the following areas: sensitivity at longer and shorter x-ray wavelengths and minimization of noise-broadening of spectral lines. In this paper, we review basic limitations and recent advances in each of these areas. Throughout the review, we emphasize the systems nature of the problem. That is. limitations exist not only in the sensor elements but also in the preamplifier/amplifier chain and in the interfaces between these components.Solid state x-ray sensors usually function by way of incident photons creating electron-hole pairs in semiconductor material. This radiation-produced mobile charge is swept into external circuitry by electric fields in the semiconductor bulk.


2011 ◽  
Vol 7 (S282) ◽  
pp. 65-66
Author(s):  
Augustin Skopal

AbstractThe spectrum of strongly interacting binaries, as for example, high and low mass X-ray binaries, symbiotic (X-ray) binaries and/or classical and recurrent novae, consists of more components of radiation contributing from hard X-rays to radio wavelengths. To understand the basic physical processes responsible for the observed spectrum we have to disentangle the composite spectrum into its individual components, i.e. to determine their physical parameters. In this short contribution I demonstrate the method of modeling the multiwavelength SED on the example of the extragalactic super-soft X-ray source RX J0059.1-7505 (LIN 358).


2000 ◽  
Vol 61 (3) ◽  
pp. 3042-3052 ◽  
Author(s):  
M. May ◽  
K. Fournier ◽  
D. Pacella ◽  
H. Kroegler ◽  
J. Rice ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document