scholarly journals The Absolute Proper Motion of the Pleiades Cluster

1970 ◽  
Vol 7 ◽  
pp. 103-104
Author(s):  
W. F. van Altena ◽  
B. F. Jones

The establishment of a truly inertial reference system is a problem that has defied solution for many years. However, with the completion of the Lick proper motion survey (Wright 1950) and the USSR program (Deutsch 1954) the situation for the northern hemisphere should be satisfactory.

1978 ◽  
Vol 48 ◽  
pp. 527-533
Author(s):  
Chr. de Vegt

The present accuracy limit for the majority of fainter stars on the northern hemisphere is set by the AGK2/3-catalogue, recently completely finished, but it should be noted that its epoch is much earlier (1960). Furtheron the AGK3-catalogue is a direct repetition of the AGK2, the plates have been taken with the same astrograph in a broad blue spectral bandpass and measured visually with the same equipment, therefore virtually an instrumental standard of 1930 is realized again. Figure 1 shows the mean errors of the AGK2/3 catalogue positions as a function of magnitude. The best accuracy for the AGK2/3 data is obtained for the stars of about ninth magnitude: 017 (AGK2) and 020 (AGK3) but decreases for the faint stars with mpg11 to 019 (AGK2) and Pg 027 (AGK3). Here the AGK3 data are even less accurate. With increasing distance to the catalogue epochs, the accuracy of positions decreases due to the proper motion errors. In the upper part of figure 2 the dependence of the AGK2/3 catalogue accuracy on time is shown for the faint stars separately and an averaged value.


1998 ◽  
Vol 11 (1) ◽  
pp. 536-538
Author(s):  
J. Kovalevsky

Abstract The astrometric results of Hipparcos include the positions at epoch (1991.25), the proper motion in the new IAU extragalactic reference system (ICRS), and parallaxes for about 118 000 stars. One dimensional positions are also given for 48 asteroids and 3 satellites. Due to the non-isotropy of the scanning law, the uncertainties are position dependent. Some indications of the remaining correlations are given. Various tests and comparisons show that systematic errors in parallax, if any, are not larger than 0.1 millisecond of arc.


1993 ◽  
Vol 264 (3) ◽  
pp. 579-586 ◽  
Author(s):  
R.- D. Scholz ◽  
M. Odenkirchen ◽  
M. J. Irwin

Author(s):  
O. Hasler ◽  
S. Nebiker

Abstract. Estimating the pose of a mobile robotic platform is a challenging task, especially when the pose needs to be estimated in a global or local reference frame and when the estimation has to be performed while the platform is moving. While the position of a platform can be measured directly via modern tachymetry or with the help of a global positioning service GNSS, the absolute platform orientation is harder to derive. Most often, only the relative orientation is estimated with the help of a sensor mounted on the robotic platform such as an IMU, with one or multiple cameras, with a laser scanner or with a combination of any of those. Then, a sensor fusion of the relative orientation and the absolute position is performed. In this work, an additional approach is presented: first, an image-based relative pose estimation with frames from a panoramic camera using a state-of-the-art visual odometry implementation is performed. Secondly, the position of the platform in a reference system is estimated using motorized tachymetry. Lastly, the absolute orientation is calculated using a visual marker, which is placed in the space, where the robotic platform is moving. The marker can be detected in the camera frame and since the position of this marker is known in the reference system, the absolute pose can be estimated. To improve the absolute pose estimation, a sensor fusion is conducted. Results with a Lego model train as a mobile platform show, that the trajectory of the absolute pose calculated independently with four different markers have a deviation < 0.66 degrees 50% of the time and that the average difference is < 1.17 degrees. The implementation is based on the popular Robotic Operating System ROS.


2015 ◽  
Vol 5 (3) ◽  
pp. 234-239
Author(s):  
Платонова ◽  
Marina Platonova ◽  
Драпалюк ◽  
Mikhail Drapalyuk ◽  
Платонов ◽  
...  

This article discusses the the selection and justification of the reference system and of the generalized coordinates for the kinematic scheme developed by of the manipulator taking into account these factors. The absolute (inertial) coordinate system associated with the center of the support member (eg turntable), joins the arm to the base machine and the subsequent coordinate system formed in accordance with the rules. On the whole, to describe the position of the investigated little detail of the manipulator in the space of generalized coordinates must be four and five right-hand orthogonal coordinate systems.


2000 ◽  
Vol 120 (4) ◽  
pp. 1892-1905 ◽  
Author(s):  
Dana I. Dinescu ◽  
Steven R. Majewski ◽  
Terrence M. Girard ◽  
Kyle M. Cudworth
Keyword(s):  

1979 ◽  
Vol 50 ◽  
pp. 19-1-19-9
Author(s):  
James A. Hughes

AbstractA review will be presented of the status of the fundamental reference system. Mention will be made of the problems limiting the accuracy of transit circles and photographic astrometry and attempts at possible improvments in the near future. The progress in the preparation of the FK5 will be briefly mentioned, as will be the various methods used to approximate an inertial reference frame. Needs for higher accuracy in Astronomy fall in the area of better modeling of the Earth's motion (rotation, nutation, precession, the ecliptic, etc.) as well as a parallax and proper motion determination for galactic structure studies, stellar dynamics and stellar evolution. It will be assumed that interferometric binary star studies will be discussed elsewhere.


2017 ◽  
Vol 30 (1) ◽  
pp. 1-32 ◽  
Author(s):  
S. Mohammad Mozaffari

ArgumentIn the Almagest, Ptolemy finds that the apogee of Mercury moves progressively at a speed equal to his value for the rate of precession, namely one degree per century, in the tropical reference system of the ecliptic coordinates. He generalizes this to the other planets, so that the motions of the apogees of all five planets are assumed to be equal, while the solar apsidal line is taken to be fixed. In medieval Islamic astronomy, one change in this general proposition took place because of the discovery of the motion of the solar apogee in the ninth century, which gave rise to lengthy discussions on the speed of its motion. Initially Bīrūnī and later Ibn al-Zarqālluh assigned a proper motion to it, although at different rates. Nevertheless, appealing to the Ptolemaic generalization and interpreting it as a methodological axiom, the dominant idea became to extend it in order to include the motion of the solar apogee as well. Another change occurred after correctly making a distinction between the motion of the apogees and the rate of precession. Some Western Islamic astronomers generalized Ibn al-Zarqālluh's proper motion of the solar apogee to the apogees of the planets. Analogously, Ibn al-Shāṭir maintained that the motion of the apogees is faster than precession. Nevertheless, the Ptolemaic generalization in the case of the equality of the motions of the apogees remained untouchable, despite the notable development of planetary astronomy, in both theoretical and observational aspects, in the late Islamic period.


Sign in / Sign up

Export Citation Format

Share Document