scholarly journals ALEXIS Lunar Observations

1996 ◽  
Vol 152 ◽  
pp. 465-470
Author(s):  
B.C. Edwards ◽  
J.J. Bloch ◽  
D. Roussel-Dupré ◽  
T.E. Pfafman ◽  
Sean Ryan

The ALEXIS small satellite was designed as a large area monitor operating at extreme ultraviolet wavelengths (130 − 190 Å). At these energies, the moon is the brightest object in the night sky and was the first source identified in the ALEXIS data. Due to the design of ALEXIS and the lunar orbit, the moon is observed for two weeks of every month. Since lunar emissions in the extreme ultraviolet are primarily reflected solar radiation these observations may be useful as a solar monitor in the extreme ultraviolet. The data show distinct temporal and spectral variations indicating similar changes in the solar spectrum. We will present a preliminary dataset of lunar observations and discussions covering the variations observed and how they relate to the solar spectrum.

1980 ◽  
Vol 90 ◽  
pp. 263-266
Author(s):  
P. D. Feldman

The ultraviolet spectrum of Comet West (1976 VI) in the range 1200-3200 Å was recorded by rocket-borne instruments on March 5.5, 1976. At the time of launch, r = 0.385, Δ = 0.84 and the phase angle was 78°. Longward of 2100 Å the continuum of solar radiation scattered by cometary dust is detected and is found to closely follow the solar spectrum. Since the dust coma is completely included in the spectrometer slit, the ultraviolet albedo can be determined relative to the visible and this ratio is found to be ≈0.3 at 2700 Å. There is evidence for a further decrease in albedo near 2200 Å. Using a visible albedo of 0.2 gives a value of 0.06 for the cometary albedo at 2700 Å, a value similar to that found for the moon and lunar dust in this spectral region.


2013 ◽  
Vol 40 (1) ◽  
pp. 135-146
Author(s):  
Aleksandar Tomic

Newton's formula for gravity force gives greather force intensity for atraction of the Moon by the Sun than atraction by the Earth. However, central body in lunar (primary) orbit is the Earth. So appeared paradox which were ignored from competent specialist, because the most important problem, determination of lunar orbit, was inmediately solved sufficiently by mathematical ingeniosity - introducing the Sun as dominant body in the three body system by Delaunay, 1860. On this way the lunar orbit paradox were not canceled. Vujicic made a owerview of principles of mechanics in year 1998, in critical consideration. As an example for application of corrected procedure he was obtained gravity law in some different form, which gave possibility to cancel paradox of lunar orbit. The formula of Vujicic, with our small adaptation, content two type of acceleration - related to inertial mass and related to gravity mass. So appears carried information on the origin of the Moon, and paradox cancels.


1959 ◽  
Vol 64 ◽  
pp. 133
Author(s):  
R. R. Tousey ◽  
J. D. Purcell ◽  
D. M. Packer ◽  
W. R. Hunter

2020 ◽  
Vol 635 ◽  
pp. A156
Author(s):  
K. G. Strassmeier ◽  
I. Ilyin ◽  
E. Keles ◽  
M. Mallonn ◽  
A. Järvinen ◽  
...  

Context. Observations of the Earthshine off the Moon allow for the unique opportunity to measure the large-scale Earth atmosphere. Another opportunity is realized during a total lunar eclipse which, if seen from the Moon, is like a transit of the Earth in front of the Sun. Aims. We thus aim at transmission spectroscopy of an Earth transit by tracing the solar spectrum during the total lunar eclipse of January 21, 2019. Methods. Time series spectra of the Tycho crater were taken with the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope in its polarimetric mode in Stokes IQUV at a spectral resolution of 130 000 (0.06 Å). In particular, the spectra cover the red parts of the optical spectrum between 7419–9067 Å. The spectrograph’s exposure meter was used to obtain a light curve of the lunar eclipse. Results. The brightness of the Moon dimmed by 10.m75 during umbral eclipse. We found both branches of the O2 A-band almost completely saturated as well as a strong increase of H2O absorption during totality. A pseudo O2 emission feature remained at a wavelength of 7618 Å, but it is actually only a residual from different P-branch and R-branch absorptions. It nevertheless traces the eclipse. The deep penumbral spectra show significant excess absorption from the Na I 5890-Å doublet, the Ca II infrared triplet around 8600 Å, and the K I line at 7699 Å in addition to several hyper-fine-structure lines of Mn I and even from Ba II. The detections of the latter two elements are likely due to an untypical solar center-to-limb effect rather than Earth’s atmosphere. The absorption in Ca II and K I remained visible throughout umbral eclipse. Our radial velocities trace a wavelength dependent Rossiter-McLaughlin effect of the Earth eclipsing the Sun as seen from the Tycho crater and thereby confirm earlier observations. A small continuum polarization of the O2 A-band of 0.12% during umbral eclipse was detected at 6.3σ. No line polarization of the O2 A-band, or any other spectral-line feature, is detected outside nor inside eclipse. It places an upper limit of ≈0.2% on the degree of line polarization during transmission through Earth’s atmosphere and magnetosphere.


JOGED ◽  
2017 ◽  
Vol 7 (2) ◽  
Author(s):  
Dewi Sinta Fajawati

Bulan merupakan sumber inspiratif dalam penggarapan karya tari ini. Secara ilmu pengetahuan, Bulan adalah benda langit yang disebut satelit, satelit satu-satunya yang dimiliki Bumi dan tercipta secara alami. Banyak teori yang mengatakan tentang terbentuknya Bulan, salah satunya adalah teori Big bang atau dentuman besar. Pada dasarnya Bulan hanyalah sebuah Benda besar berbentuk bulat yang tidak bisa bercahaya, cahaya yang kita lihat pada malam hari merupakan refleksi dari cahaya matahari. Akan tetapi keindahannya memang tidak bisa dipungkiri, karena dia paling bercahaya diantara hamparan langit yang gelap. Cahayanya tidak selalu terang, bahkan tidak selalu bulat, terkadang hanya terlihat setengah atau terlihat seperti sabit..            Penata tari memetaforakan objek bulan yang berada di tempat yang sangat tinggi sebagai sebuah cita-cita yang ingin dicapai. Seringkali lagu anak-anak yang menjadi pengalaman auditif penata tari, menjadikan bulan sebagai objek yang ingin digapai, misal lagu ‘Ambilkan Bulan Bu’. Namun intisari yang akan dipakai dalam penggarapan koregrafinya adalah tentang fase bulan yang tercipta. Bersumber dari rangsang awal melihat bulan atau rangsang visual, penata tari menginterpretasikan fase-fase bulan yang terjadi sebagai fase kehidupan yang dijalani untuk menggapai sebuah cita-cita tersebut.            Koreografi diwujudkan dalam bentuk kelompok dengan membagi dua karate penari. Delapan penari merupakan simbolisasi Bulan, dan satu penari sebagai manusia yang bercita-cita. Dengan bentuk tari dramatik, penyajiannya dibagi menjadi 5 adegan, yaitu Introduksi Big bang, Adegan 1 Moon happen, Adegan 2 Mengejar Impian, Adegan 3 Dancing with Moon, dan Ending ‘Catch Your Dream’. The moon is the essential inspirations of this choreograph. Theoretically, the moon is a sky object which is called as satellite. The one and only naturally created satellite belongs to the planet Earth. There are many theories that explain how the moon was created. One of those theories is Big Bang theory or massive crash. Basically, the moon is just a huge circle thing which is unable to shine its glow. The light that we experience in the evening is the reflection of the sun. However, thebeauty of the moonlight is undeniable as it has the significant light within the darkest night sky. Its light is not always the strongest, even it’s not always circle (full), every so often it is seemed only the half part of it or crescent moon.            The choreographer interpreted the moon that belongs in the highest as the goals that she wants to reach. Most of the time, the children songs (lullaby) that pick the moon as the main object that is desired to be reached, for example the song “Ambilkan Bulan, Bu”. The essential idea that is explored in this choreograph is the creational phase of the moon itself. It was started by way of visual reaction when the choreographer observed the moon, she interpret the moon’s phases as the phases in human’s life which are gone through to reaching their goals. Fall and recovery, passionate, and even sometimes they give it in, are interpreted from the moonlight. The full moon which has the brightest and the most perfect light is likened as the strong spirit. The crescent moon with its soft light is interpreted as low spirit and unconfident.             This in-group-choreograph is separated into two characters with 8 female dancers that are the symbolization of the moon and the other one female dancer symbolizes a human with aspire. With dramatic dance form, this choreograph is presented into five parts, including introduction part of Big Bang, Moon Happen in part one, Chasing Dream is part two, Dancing With The Moon in part three, Catch Your Dream in the ending part.


2021 ◽  
Author(s):  
Ashish Kumar Chowdhary ◽  
Debabrata Sikdar

Abstract To meet the global energy demand, rapid growth in fossil fuel consumption has significantly contributed to global warming. Judicious utilization of renewable energy resources could help to combat this global challenge. Here, we present a comparative study on the designs of static and electro-tunable ‘smart’ windows that could help to reduce the energy need of typical airconditioning systems deployed in buildings and motor vehicles. Our design comprises insulator–metal–insulator multi-layered thin-films deposited over a silica glass substrate to filter visible and infrared solar radiation selectively. For static windows, we optimize our design to operate in diverse climatic conditions by choosing different combinations and thicknesses of metal and insulator layers. Whereas for electro-tunable windows, we use an electro–optic polymer as the insulator layers to dynamically control portions of transmitted solar radiation over a voltage range of −12 V to +12 V. Through size-dependence analysis, we could safely assume that the performance of smart windows is less likely to degrade during experimental realization. Our designs are lithography-free, large-area compatible, polarization-independent, angle-insensitive, and robust to fabrication imperfections. The analytical results show a near-perfect match with the simulation findings. The theoretically calculated figure of merit indicates that our proposed smart windows can outperform industry-standard commercial windows.


2021 ◽  
Author(s):  
Martin Snow ◽  
Stephane Beland ◽  
Odele Coddington ◽  
Steven Penton ◽  
Don Woodraska

<p>The GOES-R series of satellites includes a redesigned instrument for solar spectral irradiance: the Extreme ultraviolet and X-ray Irradiance Sensor (EXIS).  Our team will be using a high-cadence broadband visible light diode to construct a proxy for Total Solar Irradiance (TSI).  This will have two advantages over the existing TSI measurements:  measurements are taken at 4 Hz, so the cadence of our TSI proxy is likely faster than any existing applications, and the observations are taken from geostationary orbit, so the time series of measurements is virtually uninterrupted.  Calibration of the diode measurements will still rely on the standard TSI composites.  </p><p>The other measurement from EXIS that will be used is the Magnesium II core-to-wing ratio.  The MgII index is a proxy for chromospheric activity, and is measured by EXIS every 3 seconds.  The combination of the two proxies can be used to generate a model of the full solar spectrum similar to the NRLSSI2 empirical model.</p><p>We are in the first year of a three-year grant to develop the TSI proxy and the SSI model, so only very preliminary findings will be discussed in this presentation.</p>


Sign in / Sign up

Export Citation Format

Share Document