solar spectral irradiance
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 25)

H-INDEX

29
(FIVE YEARS 2)

2022 ◽  
Vol 316 ◽  
pp. 125816
Author(s):  
Johannes Mirwald ◽  
Drilon Nura ◽  
Lukas Eberhardsteiner ◽  
Bernhard Hofko

2021 ◽  
Author(s):  
Luca Egli ◽  
Julian Gröbner ◽  
Gregor Hülsen ◽  
Herbert Schill ◽  
René Stübi

Abstract. Total column ozone (TCO) is commonly measured by Brewer and Dobson spectroradiometers. Both types of instruments are using four wavelengths in the ultraviolet radiation range to derive TCO. For the calibration and quality assurance of the measured TCO both instrument types require periodic field comparisons with a reference instrument. This study presents traceable TCO retrievals from direct solar spectral irradiance measurements with the portable UV reference instrument QASUME. TCO is retrieved by a spectral fitting technique derived by a minimal least square fit algorithm using spectral measurements in the wavelength range between 305 nm and 345 nm. The retrieval is based on an atmospheric model accounting for different atmospheric parameters such as effective ozone temperature, aerosol optical depth, Rayleigh scattering, SO2, ground air pressure, ozone absorption cross sections and top-of-atmosphere solar spectrum. Traceability means, that the QASUME instrument is fully characterized and calibrated in the laboratory to SI standards (International System of Units). The TCO retrieval method from this instrument is independent from any reference instrument and does not require periodic in situ field calibration. The results show that TCO from QASUME can be retrieved with a relative standard uncertainty of less than 0.8 %, when accounting for all possible uncertainties from the measurements and the retrieval model, such as different cross sections, different reference solar spectra, uncertainties from effective ozone temperature or other atmospheric parameters. The long-term comparison of QASUME TCO with a Brewer and a Dobson in Davos, Switzerland, reveals, that all three instruments are consistent within 1 % when using the ozone absorption cross section from the University of Bremen. From the results and method presented here, other absolute SI calibrated cost effective solar spectroradiometers, such as array spectroradiometers, may be applied for traceable TCO monitoring.


2021 ◽  
Vol 13 (19) ◽  
pp. 10585
Author(s):  
Aitor Marzo ◽  
Jesús Ballestrín ◽  
Joaquín Alonso-Montesinos ◽  
Pablo Ferrada ◽  
Jesús Polo ◽  
...  

Measurement of solar spectral irradiance is required in an increasingly wide variety of technical applications, such as atmospheric studies, health, and solar energy, among others. The solar spectral irradiance at ground level has a strong dependence on many atmospheric parameters. In addition, spectroradiometer optics and detectors have high sensitivity. Because of this, it is necessary to compare with a reference instrumentation or light source to verify the quality of measurements. A simple and realistic test for validating solar spectral irradiance measurements is presented in this study. This methodology is applicable for a specific spectral range inside the broadband range from 280 to 4000 nm under cloudless sky conditions. The method compares solar spectral irradiance measurements with both predictions of clear-sky solar spectral irradiance and measurements of broadband instruments such as pyrheliometers. For the spectral estimation, a free atmospheric transmittance simulation code with the air mass calculation as the mean parameter was used. The spectral direct normal irradiance (Gbλ) measurements of two different spectroradiometers were tested at Plataforma Solar de Almería, Spain. The results are presented in this article. Although only Gbλ measurements were considered in this study, the same methodology can be applied to the other solar irradiance components.


2021 ◽  
Author(s):  
Martin Snow ◽  
Stephane Beland ◽  
Odele Coddington ◽  
Steven Penton ◽  
Don Woodraska

<p>The GOES-R series of satellites includes a redesigned instrument for solar spectral irradiance: the Extreme ultraviolet and X-ray Irradiance Sensor (EXIS).  Our team will be using a high-cadence broadband visible light diode to construct a proxy for Total Solar Irradiance (TSI).  This will have two advantages over the existing TSI measurements:  measurements are taken at 4 Hz, so the cadence of our TSI proxy is likely faster than any existing applications, and the observations are taken from geostationary orbit, so the time series of measurements is virtually uninterrupted.  Calibration of the diode measurements will still rely on the standard TSI composites.  </p><p>The other measurement from EXIS that will be used is the Magnesium II core-to-wing ratio.  The MgII index is a proxy for chromospheric activity, and is measured by EXIS every 3 seconds.  The combination of the two proxies can be used to generate a model of the full solar spectrum similar to the NRLSSI2 empirical model.</p><p>We are in the first year of a three-year grant to develop the TSI proxy and the SSI model, so only very preliminary findings will be discussed in this presentation.</p>


2020 ◽  
Vol 645 ◽  
pp. A2
Author(s):  
M. Meftah ◽  
M. Snow ◽  
L. Damé ◽  
D. Bolseé ◽  
N. Pereira ◽  
...  

Context. Solar spectral irradiance (SSI) is the wavelength-dependent energy input to the top of the Earth’s atmosphere. Solar ultraviolet (UV) irradiance represents the primary forcing mechanism for the photochemistry, heating, and dynamics of the Earth’s atmosphere. Hence, both temporal and spectral variations in solar UV irradiance represent crucial inputs to the modeling and understanding of the behavior of the Earth’s atmosphere. Therefore, measuring the long-term solar UV irradiance variations over the 11-year solar activity cycle (and over longer timescales) is fundamental. Thus, each new solar spectral irradiance dataset based on long-term observations represents a major interest and can be used for further investigations of the long-term trend of solar activity and the construction of a homogeneous solar spectral irradiance record. Aims. The main objective of this article is to present a new solar spectral irradiance database (SOLAR-v) with the associated uncertainties. This dataset is based on solar UV irradiance observations (165−300 nm) of the SOLAR/SOLSPEC space-based instrument, which provides measurements of the full-disk SSI during solar cycle 24. Methods. SOLAR/SOLSPEC made solar acquisitions between April 5, 2008 and February 10, 2017. During this period, the instrument was affected by the harsh space environment that introduces instrumental trends (degradation) in the SSI measurements. A new method based on an adaptation of the Multiple Same-Irradiance-Level (MuSIL) technique was used to separate solar variability and any uncorrected instrumental trends in the SOLAR/SOLSPEC UV irradiance measurements. Results. A new method for correcting degradation has been applied to the SOLAR/SOLSPEC UV irradiance records to provide new solar cycle variability results during solar cycle 24. Irradiances are reported at a mean solar distance of 1 astronomical unit (AU). In the 165−242 nm spectral region, the SOLAR/SOLSPEC data agrees with the observations (SORCE/SOLSTICE) and models (SATIRE-S, NRLSSI 2) to within the 1-sigma error envelope. Between 242 and 300 nm, SOLAR/SOLSPEC agrees only with the models.


2020 ◽  
Author(s):  
Anton Kopatsch ◽  
Peter Kary ◽  
Mustafa Özden ◽  
Andreas Albert ◽  
Andrea Ghirardo ◽  
...  

Abstract The development of light-emitting diodes (LEDs) of different emission spectra is revolutionizing lighting technology and opening up completely new applications and research areas. The spectral irradiance of the sun reaching the Earth's surface is very complex due to radiative transfer processes within the atmosphere and ranges from the shortwave ultraviolet (UV) to longwave infrared (IR) radiation. The simulation of this spectral irradiance by artificial light sources is technically very demanding. It could be realized sufficiently so far by a combination of different light sources, mostly light bulbs, metal halide lamps and fluorescent tubes, in combination of different filters. In the present work, we are presenting a new LED Sun Simulator system, which allows simulating spectral irradiance close to natural solar spectral irradiance from 360 to 800 nm. The system generates the spectral irradiance by a combination of 23 different types of LED. The irradiance of each of the 23 different LED types can be separately controlled by software to modulate the spectra. In total, the system comprises 2,530 high-power LEDs mounted on 100 printed circuit boards (PCBs) / aluminum boards. With this system, an experimental area of one square meter can be homogeneously irradiated (irradiance with a mean variability of 2 % in the integrated range of 360 nm - 800 nm) at the distance of 1.6 m simulating the spectral irradiance of the standard reference spectrum of the American Society for Testing and Materials (ASTM G173-03). At maximum, the LED lighting field can reach an irradiance of 2,500 W m-2, which is more than twice than that of the brightest sunlight in Central Europe. Thus, the new system opens up multiple new applications in many research areas ranging from photobiology to human health and environmental and material sciences.


Sign in / Sign up

Export Citation Format

Share Document