Two New T Tauri stars and a Candidate FU Orionis Star associated with Bok Globules

1997 ◽  
Vol 163 ◽  
pp. 839-839
Author(s):  
J. L. Yun ◽  
M. Moreira

AbstractWe present photometric and spectroscopic evidence of two new T Tauri stars formed in the conditions of isolated small Bok globules. The spectral energy distributions of these objects display excess infrared emission, they are associated with optical reflection nebulae, and their optical spectra reveal Balmer emission lines and the Li I λ6707 Å absorption line. Additionnally, we report the discovery of what is likely to be a new FU Orionis star seen towards Bok globule CB34. The star is about 4 magnitudes brighter than it appears on the Palomar plates and is associated with the aggregate of young stellar objects forming in Bok globule CB34.

2019 ◽  
Vol 627 ◽  
pp. A135 ◽  
Author(s):  
A. Bhardwaj ◽  
N. Panwar ◽  
G. J. Herczeg ◽  
W. P. Chen ◽  
H. P. Singh

Context. Pre-main-sequence variability characteristics can be used to probe the physical processes leading to the formation and initial evolution of both stars and planets. Aims. The photometric variability of pre-main-sequence stars is studied at optical wavelengths to explore star–disk interactions, accretion, spots, and other physical mechanisms associated with young stellar objects. Methods. We observed a field of 16′ × 16′ in the star-forming region Pelican Nebula (IC 5070) at BVRI wavelengths for 90 nights spread over one year in 2012−2013. More than 250 epochs in the VRI bands are used to identify and classify variables up to V ∼ 21 mag. Their physical association with the cluster IC 5070 is established based on the parallaxes and proper motions from the Gaia second data release (DR2). Multiwavelength photometric data are used to estimate physical parameters based on the isochrone fitting and spectral energy distributions. Results. We present a catalog of optical time-series photometry with periods, mean magnitudes, and classifications for 95 variable stars including 67 pre-main-sequence variables towards star-forming region IC 5070. The pre-main-sequence variables are further classified as candidate classical T Tauri and weak-line T Tauri stars based on their light curve variations and the locations on the color-color and color-magnitude diagrams using optical and infrared data together with Gaia DR2 astrometry. Classical T Tauri stars display variability amplitudes up to three times the maximum fluctuation in disk-free weak-line T Tauri stars, which show strong periodic variations. Short-term variability is missed in our photometry within single nights. Several classical T Tauri stars display long-lasting (≥10 days) single or multiple fading and brightening events of up to two magnitudes at optical wavelengths. The typical mass and age of the pre-main-sequence variables from the isochrone fitting and spectral energy distributions are estimated to be ≤1 M⊙ and ∼2 Myr, respectively. We do not find any correlation between the optical amplitudes or periods with the physical parameters (mass and age) of pre-main-sequence stars. Conclusions. The low-mass pre-main-sequence stars in the Pelican Nebula region display distinct variability and color trends and nearly 30% of the variables exhibit strong periodic signatures attributed to cold spot modulations. In the case of accretion bursts and extinction events, the average amplitudes are larger than one magnitude at optical wavelengths. These optical magnitude fluctuations are stable on a timescale of one year.


2004 ◽  
Vol 202 ◽  
pp. 328-330
Author(s):  
W.R.F. Dent ◽  
M. C. Wyatt ◽  
W. S. Holland ◽  
J. S. Greaves ◽  
I. M. Coulson ◽  
...  

New photometry of main-sequence debris discs has been carried out at 850 and 450/μm; the derived SEDs indicate that the dust can lie in either thin rings or radially-extended discs, as seen directly in the few nearby objects which are resolvable. All such objects are consistent with a long wavelength opacity index β of 1.0±0.2 - similar to T Tauri stars, but significantly lower than embedded objects.


1974 ◽  
Vol 60 ◽  
pp. 301-302
Author(s):  
L. E. B. Johansson ◽  
B. Höglund ◽  
A. Winnberg ◽  
Nguyen-Q-Rieu ◽  
W. M. Goss

Narrow OH emission lines at 1667 MHz, apparently from a Class I source, have been observed near the reflection nebula NGC 2071. The region contains many T Tauri stars. OH emission corresponding to the dust cloud north and east of NGC 2024 is also seen. At 1720 MHz the dust cloud component appears in absorption; presumably the isotropic 2.7 K cosmic background is being absorbed.


2001 ◽  
Vol 200 ◽  
pp. 265-274 ◽  
Author(s):  
Chris D. Koresko ◽  
Christoph Leinert

Infrared companions are young stellar objects with unusual properties gravitationally bound to more or less typical T Tauri stars. As such they promise to be the source of information on either a particular phase in the development of young stars or on a particular mode of development. We discuss the observed properties of infrared companions as well as attempts to explain their physical status with the aim to see how much of solid conclusion has been obtained so far.


1987 ◽  
Vol 122 ◽  
pp. 103-104
Author(s):  
U. Finkenzeller ◽  
G. Basri

We discuss new spectroscopic material on 7 T Tauri stars of low to intermediate activity level which have envelopes of low optical thickness and small circumstellar/interstellar extinction. We show that difference plots between the target star and appropriate standards are a powerful tool to probe the stellar envelope structure. In our sample we find 1 object with a P Cyg type, 3 with inverse P Cyg type, and 3 with symmetrical Balmer line profiles. We conclude that the physical processes in these T Tauri stars do not differ qualitatively from the ones found in extremely active ones. In particular, the inverse P Cyg type profiles are not restricted to stars with very opaque envelopes and are possibly a much more common attribute of young stellar objects.


2007 ◽  
Vol 3 (S243) ◽  
pp. 1-12 ◽  
Author(s):  
Claude Bertout

AbstractAccretion and magnetic fields play major roles in several of the many models put forward to explain the properties of T Tauri stars since their discovery by Alfred Joy in the 1940s. Early investigators already recognized in the 1950s that a source of energy external to the star was needed to account for the emission properties of these stars in the optical range.The opening of new spectral windows from the infrared to the ultraviolet in the 1970s and 1980s showed that the excess emission of T Tauri stars and related objects extends into all wavelength domains, while evidence of outflow and/or infall in their circumstellar medium was accumulating.Although the disk hypothesis had been put forward by Merle Walker as early as 1972 to explain properties of YY Orionis stars and although Lynden-Bell and Pringle worked out the accretion disk model and applied it specifically to T Tauri stars in 1974, the prevailing model for young stellar objects until the mid-1980s assumed that they experienced extreme solar-type activity. It then took until the late 1980s before the indirect evidence of disks presented by several teams of researchers became so compelling that a paradigm shift occurred, leading to the current consensual picture.I briefly review the various models proposed for explaining the properties of young stellar objects, from their discovery to the direct observations of circumstellar disks that have so elegantly confirmed the nature of young stars. I will go on to discuss more modern issues concerning their accretion disk properties and conclude with some results obtained in a recent attempt to better understand the evolution of Taurus-Auriga young stellar objects.


Sign in / Sign up

Export Citation Format

Share Document