Intraday Variability of Flat-Spectrum Radio Sources

1998 ◽  
Vol 164 ◽  
pp. 257-264
Author(s):  
S. J. Wagner

AbstractThe characteristics of rapid variability of flat-spectrum radio sources are reviewed. A large fraction of the blazar population is found to show variability on timescales shorter than one day throughout the entire electromagnetic spectrum. The spectral indices and polarization characteristics change equally fast.Structure functions of the well-monitored sources show pronounced breaks on scales of about 10 to 50 hours, with flatter slopes towards the fast end. This illustrates that Intraday Variability (IDV), i.e. the high frequency end of the power spectrum is qualitatively different and requires different mechanisms than slower variations.While intrinsic IDV provides direct clues on small-scale structure over fifteen decades in frequency, extrinsic contributions from interstellar scattering contributes at the lowest frequencies, and remains difficult to disentangle from the intrinsic effects.

1996 ◽  
Vol 175 ◽  
pp. 63-66 ◽  
Author(s):  
R. Fanti ◽  
R. E. Spencer

A large fraction of the sources in flux density limited radio samples have angular sizes < 2 arcsec (and hence projected linear sizes ≤ 10–15 kpc for H0 = 100 Km/(sec Mpc), and steep (α > 0.5, S∝ v–α) high frequency spectra (Kapahi, 1981; Peacock and Wall 1982). The proportion of these Compact Steep–spectrum Sources (CSSs) is high (15–30% depending on the selection frequency) amongst distant (z > 0.2) radio sources of high power, both galaxies and quasars. We include in this class the GHz Peaked Spectrum Radio Sources (GPS), sub–kpc objects whose radio spectra are peaked at GHz frequencies (see, e.g., O'Dea et al, 1991).


1999 ◽  
Vol 194 ◽  
pp. 324-326
Author(s):  
V. G. Panajyan

GHz peaked spectrum radio sources (GPS) are believed to be a subclass of compact steep spectrum radio sources (CSS) with high frequency spectral indices α < −0.5 (5 ˜ vα), linear sizes of pc to kpc scale and turnover spectra near 1GHz. Due to the work of many radioastronomers during the past two decades many properties of CSS and GPS radio sources at present are known (O'Dea,C.P. et al.1998, and references therein).


2014 ◽  
Vol 11 (S308) ◽  
pp. 631-635
Author(s):  
Alla P. Miroshnichenko

AbstractWe consider evolution properties of galaxies and quasars with steep radio spectrum at the decametre band from the UTR-2 catalogue. The ratios of source's monochromatic luminosities at the decametre and high-frequency bands display the dependence on the redshift, linear size, characteristic age of examined objects. At that, the mean values of corresponding ratios for considered galaxies and quasars have enough close quantities,testifying on the unified model of sources. We analyse obtained relations for two types of steep-spectrum sources (with linear steep spectrum (S) and low-frequency steepness after a break (C+)) from the UTR-2 catalogue.


2001 ◽  
Vol 182 ◽  
pp. 119-122
Author(s):  
S.J. Qian ◽  
A. Kraus ◽  
T.P. Krichbaum ◽  
A. Witzel ◽  
J.A. Zensus

AbstractIntraday variability in compact flat-spectrum radio sources has been intensively studied in recent years. For most IDV events the apparent brightness temperatures derived from the observed timescales are in the range of Tb,app ~ 1016−18 K. For extremely rapid variations, Tb,app can reach up to ~ 1021 K (e.g. Kedziora-Chudczer et al., 1997). Refractive interstellar scintillation may be the most likely extrinsic mechanism (Rickett et al., 1995; Qian, 1994a; Qian, 1994b). Especially for the case of extreme Tb,app (> 1018 K) RISS may be dominant (Dennet-Thorpe and de Bruyn, 2000). However, some IDV events with Tapp ~ 1017−18 K show evidence for an intrinsic origin e.g. the correlated radio-optical intraday variations observed in the BL Lac object 0716+714 (Wagner and Witzel, 1995, Qian et al, 1996). It seems important to distinguish between IDV which is a phenomenon intrinsic to the compact radio sources and IDV which is primarily due to RISS. Multifrequency polarization and VLB I observations would be most helpful (Gabuzda and Kochanev, 1997).


1988 ◽  
Vol 129 ◽  
pp. 125-126
Author(s):  
Franco Mantovani ◽  
Tom Muxlow ◽  
Lucia Padrielli

The observed variability at low frequency of the radio sources can be explained within the framework of the generally accepted models either extrinsic (refractive scintillation in the interstellar medium) or intrinsic (bulk relativistic motion along direction near the line of sight) for variability. Both explanations require a large fraction of the source flux density to be contained in a small high brightness component, of tens of m.a.s. in size. Radio sources with steep straight spectral index are usually tens of Kpc sized, with weak central components and they do not generally show low frequency variability.


1998 ◽  
Vol 164 ◽  
pp. 37-38 ◽  
Author(s):  
T.P. Krichbaum ◽  
A. Kraus ◽  
K. Otterbein ◽  
S. Britzen ◽  
A. Witzel ◽  
...  

AbstractWe report new results from high frequency (22-86 GHz) VLBI monitoring observations of selected blazars. These Gamma-bright sources show pronounced correlated flux density variations over the full electromagnetic spectrum (radio to Gamma-ray bands). From our high-angular resolution images (0.1-0.2 mas), we find increasing evidence for a tight correlation between this activity and the production of new jet components. Here we present results for the 3 sources PKS 0528+134, 3C 273, & 0836+710.


2009 ◽  
Vol 53 (5) ◽  
pp. 389-400 ◽  
Author(s):  
A. G. Gorshkov ◽  
A. V. Ipatov ◽  
I. A. Ipatova ◽  
V. K. Konnikova ◽  
V. V. Mardyshkin ◽  
...  

2019 ◽  
Vol 489 (4) ◽  
pp. 4944-4961 ◽  
Author(s):  
Henry R M Zovaro ◽  
Nicole P H Nesvadba ◽  
Robert Sharp ◽  
Geoffrey V Bicknell ◽  
Brent Groves ◽  
...  

ABSTRACT Hydrodynamical simulations predict that the jets of young radio sources can inhibit star formation in their host galaxies by injecting heat and turbulence into the interstellar medium (ISM). To investigate jet–ISM interactions in a galaxy with a young radio source, we have carried out a multiwavelength study of the z = 0.025 Compact Steep Spectrum radio source hosted by the early-type galaxy UGC 05771. Using Keck/OSIRIS observations, we detected H2 1–0 S(1) and [Fe ii] emission at radii of 100s of parsecs, which traces shocked molecular and ionized gas being accelerated outwards by the jets to low velocities, creating a ‘stalling wind’. At kpc radii, we detected shocked ionized gas using observations from the CALIFA survey, covering an area much larger than the pc-scale radio source. We found that existing interferometric radio observations fail to recover a large fraction of the source’s total flux, indicating the likely existence of jet plasma on kpc scales, which is consistent with the extent of shocked gas in the host galaxy. To investigate the star formation efficiency in UGC 05771, we obtained IRAM CO observations to analyse the molecular gas properties. We found that UGC 05771 sits below the Kennicutt–Schmidt relation, although we were unable to definitively conclude if direct interactions from the jets are inhibiting star formation. This result shows that jets may be important in regulating star formation in the host galaxies of compact radio sources.


1999 ◽  
Vol 515 (2) ◽  
pp. 558-566 ◽  
Author(s):  
David B. Shaffer ◽  
K. I. Kellermann ◽  
T. J. Cornwell
Keyword(s):  

1987 ◽  
Vol 121 ◽  
pp. 287-293
Author(s):  
C.J. Schalinski ◽  
P. Biermann ◽  
A. Eckart ◽  
K.J. Johnston ◽  
T.Ph. Krichbaum ◽  
...  

A complete sample of 13 flat spectrum radio sources is investigated over a wide range of frequencies and spatial resolutions. SSC-calculations lead to the prediction of bulk relativistic motion in all sources. So far 6 out of 7 sources observed with sufficient dynamic range by means of VLBI show evidence for apparent superluminal motion.


Sign in / Sign up

Export Citation Format

Share Document