jet plasma
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 35)

H-INDEX

21
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Joelle Mailloux

Abstract The JET 2019-2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major Neutral Beam Injection (NBI) upgrade providing record power in 2019-2020, and tested the technical & procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle physics in the coming D-T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed Shattered Pellet Injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design & operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D-T benefited from the highest D-D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER.


2021 ◽  
Vol 28 (6) ◽  
Author(s):  
Anna Zymaková ◽  
Martin Albrecht ◽  
Roman Antipenkov ◽  
Alexandr Špaček ◽  
Stefan Karatodorov ◽  
...  

ELI Beamlines is a rapidly progressing pillar of the pan-European Extreme Light Infrastructure (ELI) project focusing on the development and deployment of science driven by high-power lasers for user operations. This work reports the results of a commissioning run of a water-jet plasma X-ray source driven by the L1 Allegra laser, outlining the current capabilities and future potential of the system. The L1 Allegra is one of the lasers developed in-house at ELI Beamlines, designed to be able to reach a pulse energy of 100 mJ at a 1 kHz repetition rate with excellent beam properties. The water-jet plasma X-ray source driven by this laser opens opportunities for new pump–probe experiments with sub-picosecond temporal resolution and inherent synchronization between pump and probe pulses.


2021 ◽  
pp. 10-25
Author(s):  
Reshma Vadakhe Madathil ◽  
Ranjitha Gracy Thirugnanasambandan Kalaivendan ◽  
Anjaly Paul ◽  
Mahendran Radhakrishnan

Cold plasma is recognized and explored for a plethora of applications in the food and agricultural industry. This study investigated the influence of a continuous atmospheric pressure non-thermal jet plasma system on the mortality of Rhyzopertha dominica adults in whole wheat kernels and the changes in the milling and physicochemical attributes of the treated whole wheat. Air-filled packets of whole wheat kernels were artificially infested with R. dominica adults. The packages were carried by a continuous conveyor belt and treated with plasma at voltages ranging from 44-47 kV for 4-7 min. The mortality was determined after 24 h and milling yield, particle size, proximate composition, and color of plasma-treated and untreated wheat grains were also evaluated. The maximum mortality was 88.33% at 47 kV for 7 min. The milling yield, protein, and fiber content of wheat were enhanced with plasma treatment significantly. Thus the continuous atmospheric pressure jet plasma used in this study could be one of the practically implementable emerging techniques for the commercial disinfestation of packaged food products.


2021 ◽  
Author(s):  
Sakineh Akbari Nia ◽  
Shahriar Molamohammadi ◽  
Yousef Seyed Jalili

Abstract Organic Light Emitting Diodes (OLEDs) have developed to show many advantageous and noticeable properties including their flexibility, easy processing, very cost effective chemical technology, and easy combining of organic material, hence having optimized performance is very significant. Therefore, we have to find new methods in order to be able to use the total singlet and triplet excitons population and to achieve 100% internal efficiency. If we can extend the internal efficiency to 100%, this will lead to efficient production of OLEDs in the industry. In this work, to consider increasing excitons’ population, we have worked on the uniformity of the Electron Transport Layer (ETL) and Emissive Layer (EL) by applying argon atmosphere pressure cold jet plasma. Examining the experimental data in comparison with the theoretical data has shown us that having a better uniformity in barriers (based on AFM images) and decreasing contact angle will lead to a better injection and more exciton's population leading to an increase in the internal efficiency.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 236
Author(s):  
Mahmuda Akter ◽  
Jun Sup Lim ◽  
Eun Ha Choi ◽  
Ihn Han

Glioblastoma multiforme (GBM) is a highly malignant and rapidly advancing astrocytic brain tumor in adults. Current therapy possibilities are chemotherapy, surgical resection, and radiation. The complexity of drug release through the blood-brain barrier, tumor reaction to chemotherapy, and the inherent resistance of tumor cells present challenges. New therapies are needed for individual use or combination with conventional methods for more effective treatment and improved survival for patients. GBM is difficult to treat because it grows quickly, spreads finger-shaped tentacles, and creates an irregular margin of normal tissue surrounding the tumor. Non-thermal biocompatible plasma (NBP) has recently been shown to selectively target cancer cells with minimal effects on regular cells, acting by generating reactive oxygen species (ROS) and reactive nitrogen species (RNS). We applied a soft jet plasma device with a syringe shape to U87 MG cells and astrocytes. Our results show that NBP-J significantly inhibits cell proliferation and changes morphology, induces cell cycle arrest, inhibits the survival pathway, and induces apoptosis. Our results indicate that NBP-J may be an efficient and safe clinical device for brain cancer therapy.


2020 ◽  
Vol 7 (4) ◽  
pp. 93-96
Author(s):  
R. Jamshidi ◽  
K. Hajizadeh

Regarding the fact that cell shape indicates cell health and is of particular importance in the evaluation of new therapies, in this study, stem cell deformation during Atmospheric Pressure Plasma (APP) treatment was investigated. Given that, cell deformation is a warning of cell damage, it is therefore expected that APP-based therapy, a new modern technology that is expanding worldwide, will not lead to the deformation of normal cells. Here, the stem cells exposed to Helium-fed jet plasma, with two di erent powers of 15 and 25W. Moreover, the duration of exposure was changed (30, 50, 70, and 90 seconds) to determine the most appropriate exposure time and voltage, which maintains stem cells’ health condition. First of all, it was found that cold plasma at low power does not change the shape and elongation of stem cells. Besides, it was found that if the power of a cold plasma source is 25W, it will raise cell growth rate. In this paper, the gas ow rate of the helium plasma jet was set to 3.9 liters per minute, and a plasma source frequency of 30kHz was selected.


Sign in / Sign up

Export Citation Format

Share Document