scholarly journals Time Scales for Period Change in Pulsating White Dwarf Stars

2000 ◽  
Vol 176 ◽  
pp. 521-522
Author(s):  
S. O. Kepler ◽  
J. E. S. Costa ◽  
D. E. Winget ◽  
M. D. Reed ◽  
S. D. Kawaler

AbstractWe have used the rate of change of pulsation period for the hot (DOV) pre-white dwarf PG1159–035 and the cool (DAV) white dwarf G117–B15A to measure their evolutionary time scales. We show that, for any multiperiodic star, we must take into account the effect of all pulsations simultaneously on the times of maximum of the pulsations to get reliable measurements of periods and phases.

2018 ◽  
Vol 616 ◽  
pp. A80 ◽  
Author(s):  
Julieta P. Sánchez Arias ◽  
Alejandra D. Romero ◽  
Alejandro H. Córsico ◽  
Ingrid Pelisoli ◽  
Victoria Antoci ◽  
...  

Context. Pulsating extremely low-mass pre-white dwarf stars (pre-ELMV), with masses between ~0.15 M⊙ and ~0.30 M⊙, constitute a new class of variable stars showing g- and possibly p-mode pulsations with periods between 320 and 6000 s (frequencies between 14.4 and 270 c/d), driven by the κ mechanism operating in the second He ionization zone. On the other hand, main sequence δ Scuti stars, with masses between 1.2 and 2.5 M⊙, pulsate in low-order g and p modes with periods in the range [700–28 800] s (frequencies in the range [3–123] c/d), driven by the κ mechanism operating in the He II ionization zone and the turbulent pressure acting in the HI ionization layer. Interestingly enough, the instability strips of pre-ELM white dwarf and δ Scuti stars nearly overlap in the Teff vs. log g diagram, leading to a degeneracy when spectroscopy is the only tool to classify the stars and pulsation periods only are considered. Aims. Pre-ELM white dwarf and δ Scuti stars are in very different stages of evolution and therefore their internal structure is very distinct. This is mirrored in their pulsational behavior, thus employing asteroseismology should allow us to distinguish between these groups of stars despite their similar atmospheric parameters. Methods. We have employed adiabatic and non-adiabatic pulsation spectra for models of pre-ELM white dwarfs and δ Scuti stars, and compare their pulsation periods, period spacings, and rates of period change. Results. Unsurprisingly, we found substantial differences in the period spacing of δ Scuti and pre-ELM white dwarf models. Even when the same period range is observed in both classes of pulsating stars, the modes have distinctive signature in the period spacing and period difference values. For instance, the mean period difference of p-modes of consecutive radial orders for δ Scuti model are at least four times longer than the mean period spacing for the pre-ELM white dwarf model in the period range [2000–4600] s (frequency range [18.78–43.6] c/d). In addition, the rate of period change is two orders of magnitudes larger for the pre-ELM white dwarfs compared to δ Scuti stars. In addition, we also report the discovery of a new variable star, SDSSJ075738.94+144827.50, located in the region of the Teff versus log g diagram where these two kind of stars coexist. Conclusions.The characteristic spacing between modes of consecutive radial orders (p as well as g modes) and the large differences found in the rates of period change for δ Scuti and pre-ELM white dwarf stars suggest that asteroseismology can be employed to discriminate between these two groups of variable stars. Furthermore, we found that SDSSJ075738.94+144827.50 exhibits a period difference between p modes characteristic of a δ Sct star, assuming consecutive radial order for the observed periods.


1997 ◽  
Vol 181 ◽  
pp. 367-380
Author(s):  
G. Vauclair

The theoretical potential of white dwarf asteroseismology is summarized. It is shown how one can derive fundamental parameters on the internal structure and evolution of these stars. The analysis of the non-radial g-modes permits in principle to determine the total mass, the rotation rate, the magnetic field strength. The mass of the outer layers, left on top of the carbon/oxygen core, can be determined as well as the structure of the transition zone between the core and the outer layers, giving an “a posteriori” unique information on the efficiency of the previous mass loss episodes. When measurable, the rate of change of the pulsation periods gives direct access to the evolutionary time scale and to the chemical composition of the core. These theoretical expectations are compared with the observations of variable white dwarfs in the three known instability strips for the planetary nebulae nuclei and PG1159 stars, for the DB and DA white dwarfs. Emphasis is put on results obtained from multi-sites photometric campaigns. Prospects on both theoretical developments and observations conclude the review.


1989 ◽  
Vol 114 ◽  
pp. 176-187 ◽  
Author(s):  
Gérard Vauclair

While the efficiency of gravitational settling to produce chemically pure atmospheres in white dwarf stars was outlined for the first time 30 years ago (Schatzman 1958), the competing role of the radiation flux in the hot white dwarfs was considered only 10 years ago (Fontaine and Michaud 1979; Vauclair, Vauclair and Greenstein 1979). At that time, there was more motivation to understand how metals could reappear in the long lived cool non DA white dwarfs, where diffusion time scales are shorter by orders of magnitude than evolutionary time scales. Various processes were invoked to help restore some metal content in the white dwarf atmospheres: convection mixing and dredge up, accretion of interstellar matter. In cool white dwarfs, the radiative acceleration is negligeable in the diffusion process; this is not the case at the hot end of the sequence where radiation may balance gravity. The short lived hot white dwarfs just started to become exciting with the contemporary discoveries that i) some show metallic lines in their spectra, both hydrogen rich and hydrogen poor; ii) some of these are pulsating. In the following years, the number of hot white dwarfs revealing trace abundance of metals has increased, mainly owing to IUE observations.


2004 ◽  
Vol 428 (1) ◽  
pp. 159-170 ◽  
Author(s):  
A. H. Córsico ◽  
L. G. Althaus

1989 ◽  
Vol 114 ◽  
pp. 296-299
Author(s):  
J. L. Provencal ◽  
J. C. Clemens ◽  
G. Henry ◽  
B. P. Hine ◽  
R. E. Nather ◽  
...  

White dwarf stars provide important boundary conditions for the understanding of stellar evolution. An adequate understanding of even these simple stars is impossible without detailed knowledge of their interiors. PG1346+082, an interacting binary white dwarf system, provides a unique opportunity to view the interior of one degenerate as it is brought to light in the accretion disk of the second star as the primary strips material from its less massive companion (see Wood et at. 1987).PG1346+082 is a photometric variable with a four magnitude variation over a four to five day quasi-period. A fast Fourier transform (FFT) of the light curve shows a complex, time-dependent structure of harmonics. PG1346+082 exhibits flickering – the signature of mass transfer. The optical spectra of the system contain weak emission features during minimum and broad absorption at all other times. This could be attributed to pressure broadening in the atmosphere of a compact object, or to a combination of pressure broadening and doppler broadening in a disk surrounding the compact accretor. No hydrogen lines are observed and the spectra are dominated by neutral helium. The spectra also display variable asymmetric line profiles.


2008 ◽  
Author(s):  
M. Christova ◽  
N. F. Allard ◽  
J. F. Kielkopf ◽  
D. Homeier ◽  
F. Allard ◽  
...  

2004 ◽  
Vol 602 (2) ◽  
pp. L109-L112 ◽  
Author(s):  
D. E. Winget ◽  
D. J. Sullivan ◽  
T. S. Metcalfe ◽  
S. D. Kawaler ◽  
M. H. Montgomery

2017 ◽  
Vol 598 ◽  
pp. A109 ◽  
Author(s):  
N. Giammichele ◽  
S. Charpinet ◽  
P. Brassard ◽  
G. Fontaine

Sign in / Sign up

Export Citation Format

Share Document