scholarly journals The Parallaxes of U Gem Variables

1979 ◽  
Vol 53 ◽  
pp. 494-494
Author(s):  
Karl W. Kamper

An Allegheny parallax series of SS Cyg, consisting of 52 exposures obtained on 15 nights, was recently measured on the PDS microphotometer at the David Dunlap Observatory, and a value of (m.e.) derived for the absolute parallax. This is close to the mean of the two previous discordant measures for this star given in the table below. The weighted mean of the three determinations implies that the absolute magnitude, at quiescent phase, of the star is between 7.0 and 9.0 formally at a 90% confidence level. Recent parallax determinations made at Lick by Vasilevskls et al. (1975) for three other stars, listed below along with the Mt. Wilson value for U Gem, imply even fainter absolute magnitudes.

1995 ◽  
Vol 10 ◽  
pp. 399-402
Author(s):  
A.E. Gómez ◽  
C. Turon

The Hertzprung-Russel (HR) diagram luminosity calibration relies basically on three kinds of data: trigonometric parallaxes, kinematical data (proper motions and radial velocities) and cluster distances obtained by the zero-age main sequence fitting procedure. The most fundamental method to calculate the absolute magnitude is the use of trigonometric parallaxes, but up to now, accurate data only exist for stars contained in a small volume around the sun. Individual absolute magnitudes are obtained using trigonometric parallaxes or photometric and spectroscopic calibrations. In these calibrations the accuracy on the absolute magnitude determination ranges from ±0.m2 in the main sequence to ±0m5 in the giant branch. On the other hand, trigonometric parallaxes, kinematical data or cluster distances have been used to make statistical calibrations of the absolute magnitude. The standard error on the mean absolute magnitude calibrations ranges from ±0m3 to ±0m6 on the mean sequence, from ±0m5 to ±0m7 on thegiant branch and is of about 1mfor supergiants.Future improvements in the absolute magnitude determination will depend on the improvement of the basic data from the ground and space. A brief overview of the new available data is presented. In particular, the analysis of the first 30 months data of the Hipparcos mission (H30) (from the 37 months data of the whole mission) allows to perform a statistical evaluation of the improvements expected in the luminosity determination.


Author(s):  
S. Karaali ◽  
E. Yaz Gökçe ◽  
S. Bilir ◽  
S. Tunçel Güçtekin

AbstractWe present two absolute magnitude calibrations for dwarfs based on colour–magnitude diagrams of Galactic clusters. The combination of the Mg absolute magnitudes of the dwarf fiducial sequences of the clusters M92, M13, M5, NGC 2420, M67, and NGC 6791 with the corresponding metallicities provides absolute magnitude calibration for a given (g − r)0 colour. The calibration is defined in the colour interval 0.25 ≤ (g − r)0 ≤ 1.25 mag and it covers the metallicity interval − 2.15 ≤ [Fe/H] ≤ +0.37 dex. The absolute magnitude residuals obtained by the application of the procedure to another set of Galactic clusters lie in the interval − 0.15 ≤ ΔMg ≤ +0.12 mag. The mean and standard deviation of the residuals are < ΔMg > = − 0.002 and σ = 0.065 mag, respectively. The calibration of the MJ absolute magnitude in terms of metallicity is carried out by using the fiducial sequences of the clusters M92, M13, 47 Tuc, NGC 2158, and NGC 6791. It is defined in the colour interval 0.90 ≤ (V − J)0 ≤ 1.75 mag and it covers the same metallicity interval of the Mg calibration. The absolute magnitude residuals obtained by the application of the procedure to the cluster M5 ([Fe/H] = −1.40 dex) and 46 solar metallicity, − 0.45 ≤ [Fe/H] ≤ +0.35 dex, field stars lie in the interval − 0.29 and + 0.35 mag. However, the range of 87% of them is rather shorter, − 0.20 ≤ ΔMJ ≤ +0.20 mag. The mean and standard deviation of all residuals are < ΔMJ > =0.05 and σ = 0.13 mag, respectively. The derived relations are applicable to stars older than 4 Gyr for the Mg calibration, and older than 2 Gyr for the MJ calibration. The cited limits are the ages of the youngest calibration clusters in the two systems.


2003 ◽  
Vol 20 (3) ◽  
pp. 270-278 ◽  
Author(s):  
S. Karaali ◽  
Y. Karataş ◽  
S. Bilir ◽  
S. G. Ak ◽  
E. Hamzaoğlu

AbstractWe present a new procedure for photometric parallax estimation. The data for 1236 stars provide calibrations between the absolute magnitude offset from the Hyades main-sequence and the ultraviolet-excess for eight different (B–V)0 colour-index intervals, (0.3 0.4), (0.4 0.5), (0.5 0.6), (0.6 0.7), (0.7 0.8), (0.8 0.9), (0.9 1.0) and (1.0 1.1). The mean difference between the original and estimated absolute magnitudes and the corresponding standard deviation are rather small, +0.0002 and ±0.0613 mag. The procedure has been adapted to the Sloan photometry by means of colour equations and applied to a set of artificial stars with different metallicities. The comparison of the absolute magnitudes estimated by the new procedure and the canonical one indicates that a single colour–magnitude diagram does not supply reliable absolute magnitudes for stars with large range of metallicity.


Author(s):  
S. Karaali ◽  
S. Bilir ◽  
E. Yaz Gökçe

AbstractWe present an absolute magnitude calibration for red giants with the colour–magnitude diagrams of six Galactic clusters with different metallicities, i.e. M92, M13, M3, M71, NGC 6791, and NGC 2158. The combination of the absolute magnitudes of the red giant sequences with the corresponding metallicities provides calibration for absolute magnitude estimation for red giants for a given (g − r)0 colour. The calibration is defined in the colour interval 0.45 ≤ (g − r)0 ≤ 1.30 mag and it covers the metallicity interval −2.15≤[Fe/H]≤ +0.37 dex. The absolute magnitude residuals obtained by the application of the procedure to another set of Galactic clusters lie in the interval −0.28 < ΔM ≤ +0.43 mag. However, the range of 94% of the residuals is shorter, −0.1 < ΔM ≤ +0.4 mag. The mean and the standard deviation of (all) residuals are 0.169 and 0.140 mag, respectively. The derived relations are applicable to stars older than 2 Gyr, the age of the youngest calibrating cluster.


1998 ◽  
Vol 11 (1) ◽  
pp. 566-566
Author(s):  
C. Jaschek ◽  
A.E. Gómez

We have analysed the standards of the MK system in the B0-F5 spectral region with the help of Hipparcos parallaxes, using only stars for which the error on the absolute magnitude is ≤ 0.3 mag. The sample stars (about one hundred) were scrutinized for companions and for interstellar extinction. We find that the main sequence is a wide band and that, although in general giants and dwarfs have different absolute magnitudes, the separation between luminosity class V and III is not clear. We conclude that there is no strict relation between luminosity class and absolute magnitude. The relation is only a statistical one and has a large intrinsic dispersion. We have analysed similarly the system of standards defined by Garrison and Gray (1994) separating low and high rotational velocity standards. We find similar effects as in the original MK system.


2000 ◽  
Vol 175 ◽  
pp. 117-128 ◽  
Author(s):  
Danielle Briot ◽  
Noel Robichon

AbstractAbsolute magnitudes of Be and B stars are computed for each spectral type and luminosity class V and IV, using the Hipparcos parallax measurements. Some simulations have been carried out in order to estimate the effects which could bias the mean absolute magnitude calculations. As a result, only stars with σπ/π < 15% have been used. A first result is that B stars are fainter than previous estimations by about 0.5 magnitude on average. We then observe that on average Be stars are brighter than B stars of the same spectral type and this over-luminosity increases with the spectral type. A possible interpretation is proposed based on the fact that the rotational velocity of the late Be stars is near the critical rotational velocity.


1989 ◽  
Vol 111 ◽  
pp. 121-140
Author(s):  
Allan Sandage

AbstractIt is shown that the intrinsic spread in the absolute magnitudes of the RR Lyrae variables in a given globular cluster can reach 0.5 magnitudes at a given period or at a given color, due to luminosity evolution away from the zero age horizontal (ZAHB). The size of this intrinsic luminosity spread is largest in clusters of the highest metallicity.The absolute magnitude of the ZAHB itself also differs from cluster to cluster as a function of metallicity, being brightest in clusters of the lowest metallicity. Three independent methods of calibrating the ZAHB RR Lyrae luminosities each show a strong variation of MV(RR) with [Fe/H]. The pulsation equation of P<ρ>0.5 = Q(M,Te, L) used with the observed periods, temperatures, and masses of field and of cluster RR Lyraes gives the very steep luminosity-metallicity dependence of dMv(RR)/d[Fe/H] = 0.42. Main sequence fitting of the color-magnitude diagrams of clusters which have modern main-sequence photometry gives a confirming steep slope of 0.39. A summary of Baade-Wesselink MV(RR) values for field stars determined in four independent recent studies also shows a luminosity-metallicity dependence, but less steep with a slope of dMV(RR)/d[Fe/H] = 0.21.Observations show that the magnitude difference between the main sequence turn-off point and the ZAHB in a number of well observed globular clusters is independent of [Fe/H], and has a stable value of dV = 3.54 with a disperion of only 0.1 magnitudes. Using this fact, the absolute magnitude of the main sequence turn-off is determined in any given globular cluster from the observed apparent magnitude of the ZAHB by adopting any particular MV(RR) = f([Fe/H]) calibration.Ages of the clusters are shown to vary with [Fe/H] by amounts that depend upon the slopes of the MV(RR) = f([Fe/H]) calibrations. The calibrations show that there would be a steep dependence of the age on [Fe/H] if MV(RR) does not depend on [Fe/H]. No dependence of age on metallicity exists if the RR Lyrae luminosities depend on [Fe/H] as dMV(RR)/d[Fe/H] = 0.37. If Oxygen is not enhanced as [Fe/H] decreases, the absolute average age of the globular cluster system is 16 Gyr, independent of [Fe/H], using the steep MV(RR)/[Fe/H] calibration that is favored. If Oxygen is enhanced by [O/Fe] = – 0.14 [Fe/H] + 0.40 for [Fe/H] < –1.0, as suggested from the observations of field subdwarfs, then the age of the globular cluster system decreases to 13 Gyr, again independent of [Fe/H], if the RR Lyrae ZAHB luminosities have a metallicity dependence of dMV(RR)/d[Fe/H] = 0.37.


1978 ◽  
Vol 80 ◽  
pp. 49-52
Author(s):  
André Heck

Our algorithm for stellar luminosity calibrations (based on the principle of maximum likelihood) allows the calibration of relations of the type:Where n is the size of the sample at hand,Mi, are the individual absolute magnitudes,Cijare observational quantities (j = 1, …, N), andqjare the coefficients to be determined.If we put N = 1 and CiN= 1, we havethe mean absolute magnitude of the sample. As additional output, the algorithm provides us also with the dispersion in magnitude of the sample σM, the mean solar motion (U, V, W) and the corresponding velocity ellipsoid (σu, σV, σw).


1968 ◽  
Vol 33 ◽  
pp. 187-189 ◽  
Author(s):  
J. Rajchl

A model of the head echo is examined, in which, as a source of ionization and recombination, an interaction layer of impinging atmospheric molecules (O2) mixing with reflected ones is assumed. Dissociative recombination is considered as the most probable process. If we suppose that the interaction layer is that arising in nearly free molecular flow with no shock wave present, we obtain, using the observed heights of head echoes, dimensions of meteoroids in the range 10–1 cm for absolute magnitudes between −10 and −2. It is shown that such a layer may be used to explain the high initial recombination coefficient of the order of 10−5 cm3/sec. Using the ionization collision cross-sections measured by Utterback (1963) we obtain for the mean extent of the interaction layer a value 1–100 m for heights 80–130 km, in accordance with radar observations.


Sign in / Sign up

Export Citation Format

Share Document