scholarly journals One Dimensional Hydrodynamics of Asteroid-Neutron Star Collisions

1980 ◽  
Vol 58 ◽  
pp. 591-594
Author(s):  
Michael J. Newman ◽  
Arthur N. Cox

It has been suggested by several authors (e.g., Harwit and Salpeter, 1973) that the observed cosmic gamma-ray bursts might be produced by the collision of comet or asteroid-sized bodies with a compact object. Colgate and Petschek (1980) have discussed the tidal breakup of a solid body approaching a neutron star in central impact, with particular application to the cosmic gamma-ray burst of March 5, 1979. In this work we present the results of simplified one-dimensional hydrodynamic-radiation diffusion calculations of such an occurence.

Author(s):  
Nils Andersson

This chapter discusses the different stages of an inspiralling neutron star binary system, through the formation of a black hole and the possible emergence of a gamma-ray burst. Tidal effects and the information encoded in the so-called Love numbers are explored. The violent dynamics of the merger is considered and models of gamma-ray bursts and the late time kilonova emission are also explored.


2020 ◽  
Vol 641 ◽  
pp. A56
Author(s):  
Xiaoxiao Ren ◽  
Daming Wei ◽  
Zhenyu Zhu ◽  
Yan Yan ◽  
Chengming Li

The joint detection of the gravitational wave signal and the electromagnetic emission from a binary neutron star merger can place unprecedented constraint on the equation of state of supranuclear matter. Although a variety of electromagnetic counterparts have been observed for GW170817, including a short gamma-ray burst, kilonova, and the afterglow emission, the nature of the merger remnant is still unclear, however. The X-ray plateau is another important characteristics of short gamma-ray bursts. This plateau is probably due to the energy injection from a rapidly rotating magnetar. We investigate what we can learn from the detection of a gravitational wave along with the X-ray plateau. In principle, we can estimate the mass of the merger remnant if the X-ray plateau is caused by the central magnetar. We selected eight equations of state that all satisfy the constraint given by the gravitational wave observation, and then calculated the mass of the merger remnants of four short gamma-ray bursts with a well-measured X-ray plateau. If, on the other hand, the mass of the merger remnant can be obtained by gravitational wave information, then by comparing the masses derived by these two different methods can further constrain the equation of state. We discuss the possibility that the merger product is a quark star. In addition, we estimate the possible mass range for the recently discovered X-ray transient CDF-S XT2 that probably originated from a binary neutron star merger. Finally, under the assumption that the post-merger remnant of GW170817 was a supramassive neutron star, we estimated the allowed parameter space of the supramassive neutron star and find that in this case, the magnetic dipole radiation energy is so high that it may have some effects on the short gamma-ray burst and kilonova emission. The lack of detection of these effects suggests that the merger product of GW170817 may not be a supermassive neutron star.


1981 ◽  
Vol 248 ◽  
pp. 771 ◽  
Author(s):  
S. A. Colgate ◽  
A. G. Petschek

2005 ◽  
Vol 192 ◽  
pp. 483-489
Author(s):  
Miguel A. Aloy

SummaryWe present some preliminary results of relativistic hydrodynamic simulations of post-neutron star merger disks as potential candidates for progenitors of short-lasting gamma-ray bursts. We discuss some of the generic conditions under which a gamma-ray burst can be initiated in this kind of progenitor and the main characteristics of the resulting outflow.


2017 ◽  
Vol 26 (09) ◽  
pp. 1730016 ◽  
Author(s):  
Jorge A. Rueda ◽  
Y. Aimuratov ◽  
U. Barres de Almeida ◽  
L. Becerra ◽  
C. L. Bianco ◽  
...  

Short and long-duration gamma-ray bursts (GRBs) have been recently sub-classified into seven families according to the binary nature of their progenitors. For short GRBs, mergers of neutron star binaries (NS–NS) or neutron star-black hole binaries (NS-BH) are proposed. For long GRBs, the induced gravitational collapse (IGC) paradigm proposes a tight binary system composed of a carbon–oxygen core (CO[Formula: see text]) and a NS companion. The explosion of the CO[Formula: see text] as supernova (SN) triggers a hypercritical accretion process onto the NS companion which might reach the critical mass for the gravitational collapse to a BH. Thus, this process can lead either to a NS-BH or to NS–NS depending on whether or not the accretion is sufficient to induce the collapse of the NS into a BH. We shall discuss for the above compact object binaries: (1) the role of the NS structure and the equation-of-state on their final fate; (2) their occurrence rates as inferred from the X and gamma-ray observations; (3) the expected number of detections of their gravitational wave (GW) emission by the Advanced LIGO interferometer.


2007 ◽  
Author(s):  
Brian D. Metzger ◽  
Todd A. Thompson ◽  
Eliot Quataert ◽  
Stefan Immler ◽  
Kurt Weiler

2020 ◽  
Vol 641 ◽  
pp. L10
Author(s):  
Takashi J. Moriya ◽  
Pablo Marchant ◽  
Sergei I. Blinnikov

We show that the luminous supernovae associated with ultra-long gamma-ray bursts can be related to the slow cooling from the explosions of hydrogen-free progenitors that are extended by pulsational pair-instability. We have recently shown that some rapidly-rotating hydrogen-free gamma-ray burst progenitors that experience pulsational pair-instability can keep an extended structure caused by pulsational pair-instability until the core collapse. These types of progenitors have large radii exceeding 10 R⊙ and they sometimes reach beyond 1000 R⊙ at the time of the core collapse. They are, therefore, promising progenitors of ultra-long gamma-ray bursts. Here, we perform light-curve modeling of the explosions of one extended hydrogen-free progenitor with a radius of 1962 R⊙. The progenitor mass is 50 M⊙ and 5 M⊙ exists in the extended envelope. We use the one-dimensional radiation hydrodynamics code STELLA in which the explosions are initiated artificially by setting given explosion energy and 56Ni mass. Thanks to the large progenitor radius, the ejecta experience slow cooling after the shock breakout and they become rapidly evolving (≲10 days), luminous (≳1043 erg s−1) supernovae in the optical even without energy input from the 56Ni nuclear decay when the explosion energy is more than 1052 erg. The 56Ni decay energy input can affect the light curves after the optical light-curve peak and make the light-curve decay slowly when the 56Ni mass is around 1 M⊙. They also have a fast photospheric velocity above 10 000 km s−1 and a hot photospheric temperature above 10 000 K at around the peak luminosity. We find that the rapid rise and luminous peak found in the optical light curve of SN 2011kl, which is associated with the ultra-long gamma-ray burst GRB 111209A, can be explained as the cooling phase of the extended progenitor. The subsequent slow light-curve decline can be related to the 56Ni decay energy input. The ultra-long gamma-ray burst progenitors we proposed recently can explain both the ultra-long gamma-ray burst duration and the accompanying supernova properties. When the gamma-ray burst jet is off-axis or choked, the luminous supernovae could be observed as fast blue optical transients without accompanying gamma-ray bursts.


2021 ◽  
Vol 922 (2) ◽  
pp. 102
Author(s):  
Shu-Jin Hou ◽  
Shuang Du ◽  
Tong Liu ◽  
Hui-Jun Mu ◽  
Ren-Xin Xu

Abstract The central engine of gamma-ray bursts (GRBs) remains an open and cutting-edge topic in the era of multimessenger astrophysics. X-ray plateaus appear in some GRB afterglows, which are widely considered to originate from the spindown of magnetars. According to the stable magnetar scenario of GRBs, an X-ray plateau and a decay phase ∼t −2 should appear in X-ray afterglows. Meanwhile, the “normal” X-ray afterglow is produced by the external shock from a GRB fireball. We analyze the Neil Gehrels Swift GRB data, then find three gold samples that have an X-ray plateau and a decay phase ∼t −2 superimposed on the jet-driven normal component. Based on these features of the lightcurves, we argue that the magnetars should be the central engines of these three GRBs. Future joint multimessenger observations might further test this possibility, which can then be beneficial to constrain GRB physics.


2013 ◽  
Vol 87 (8) ◽  
Author(s):  
Nicholas Stone ◽  
Abraham Loeb ◽  
Edo Berger

Sign in / Sign up

Export Citation Format

Share Document