scholarly journals The Motion of Interplanetary Dust Particles

1985 ◽  
Vol 85 ◽  
pp. 81-84
Author(s):  
I.R. East ◽  
N.K. Reay

AbstractRadial velocity measurements on the solar MgI 5183.618Å Fraunhofer absorption line in the Zodiacal Light spectrum have been made with a microprocessor-controlled servo-stabilised Fabry-Perot interferometer. Observations were made at 5 and 10 degree intervals in the ecliptic plane between morning and evening elongations of 25 degrees. These new data are of much greater precision and coverage than any previously obtained. Obtained over a two year period, the observations show a consistent evening/morning asymmetry in the radial velocity curve with the Gegenschein receding from the Earth at 4 Km/sec. These data do not support the hypothesis that the majority of interplanetary dust grains are in hyperbolic trajectories.

2020 ◽  
Vol 183 ◽  
pp. 104527 ◽  
Author(s):  
E. Hadamcik ◽  
J. Lasue ◽  
A.C. Levasseur-Regourd ◽  
J.-B. Renard

1996 ◽  
Vol 150 ◽  
pp. 163-166
Author(s):  
Jer-Chyi Liou ◽  
Herbert A. Zook ◽  
Stanley F. Dermott

AbstractThe recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population at 1 AU. We have completed a numerical study of the orbital evolution of dust grains, of diameters 1 to 9 μm, that originate in the region of the Kuiper belt. Our results show that about 80% of the grains are ejected from the Solar System by the giant planets while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, these dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances to be captured by the Earth and makes them a possible source of the collected interplanetary dust particles (IDPs); in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth.When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains larger than about 9 μm appear likely to be collisionally shattered before they can evolve to the inner part of the Solar System. Therefore, Kuiper belt dust grains may not, as they are expected to be small, contribute significantly to the zodiacal light.


1997 ◽  
Vol 23 (1) ◽  
pp. 231-236
Author(s):  
Christoph Leinert

The light of the night sky is a difficult to disentangle mixture of tropospherically scattered light, airglow, zodiacal light (including the thermal emission by interplanetary dust particles), unresolved stellar light, diffuse scattering and emission by interstellar dust and gas, and finally an extragalactic component. It has the reputation of being a very traditional field of astronomy, which certainly is true if we look at the long history of the subject. The recent renewed interest in this topic, which continued during this triennium, appears mainly to come from three sources: - first from the impressive results of the IRAS and COBE infrared satellites. They brought to general consciousness the fact that the infrared sky is characterised by strong emission from interplanetary and interstellar dust, and made clear that this emission may interfere with the study of faint interesting sources. - then from the development of sensitive detectors and arrays for essentially all of the wavelength range to be covered in this report, from the Lyman limit to ≈ 300 μm. Now the difficult measurements of the ultraviolet diffuse radiation and of the extragalactic background light in the infrared cosmological windows around 3 μm and 200 μm have become feasible and state of the art projects. - finally, the threat to astronomical observations arising from man-made development and lighting has become important enough to further studies of uncontaminated and contaminated night sky brightnesses. This report will refer mainly to those areas and is meant to highlight noteworthy developments. It was prepared with the help of Drs. Bowyer and Mattila.


1989 ◽  
Vol 8 ◽  
pp. 267-272
Author(s):  
S. S. Hong ◽  
S. M. Kwon

AbstractAnalyses of both the zodiacal light in the visible and the zodiacal emission in the infrared have provided us with ample evidence to claim that the interplanetary dust particles are mixtures or coagulations of more than one constituents and their mixing ratios vary with the distance from the sun.


1985 ◽  
Vol 85 ◽  
pp. 105-111
Author(s):  
E. Grün ◽  
H. Fechtig ◽  
J. Kissel

AbstractThe in situ dust detectors on board the Helios spaceprobes detected impacts of micrometeoroids between 0.3 AU and 1 AU distance from the sun. Among the measured quantities were mass, impact speed and flight direction of the dust particles. Radial variations of the flux, azimuthal distribution and impact speed are discussed. Significantly different results were obtained for the “apex” particles observed by both ecliptic and south sensors and for the “eccentric” particles detected only by the south sensor. The radial spatial density variation of the “eccentric” particles is compatible with that derived for zodiacal light particles. Whereas the spatial density of “apex” particles peaks at 0.5 to 0.6 AU. From the measured quantities probability distributions of orbital elements were derived for the observed micrometeoroids. About 60% of the observed micrometeoroids (“apex” particles) are on low energy orbits (a ≲ 0.6 AU). About 30% of the particles (“eccentric” particles) had high energy orbits (a ≳ 0.9 AU). More than 10% of the observed particles show high probabilities for travelling on hyperbolic orbits.


2008 ◽  
Vol 4 (S251) ◽  
pp. 315-316
Author(s):  
A. Chantal Levasseur-Regourd ◽  
Jeremie Lasue

AbstractWhile gaseous carbon-rich species in cometary comae (coming from the nuclei icy component) are extensively studied by spectroscopic remote observations, so-called CHONs dust particles, i. e. organic compounds coming from the nuclei refractory component, have mostly been studied by dust mass spectrometers flying through the comae of comets 1P/Halley and 81P/Wild 2. However, remote observations of the light scattered by dust in cometary comae and in the interplanetary medium, coupled with both numerical and experimental simulations, have recently allowed us to confirm that such particles harbor a significant fraction of absorbing material, presumably consisting of organic compounds (Levasseur-Regourd et al. PSS 2007, Lasue et al. A&A 2007).We estimate the fraction of absorbing material present in cometary dust for extensively observed comets (e.g., 1P/Halley, C/1995 O1 Hale-Bopp) and in the interplanetary dust (from zodiacal light observations). We also establish that, besides compact particles, fluffy aggregates are definitely present in these media. The properties (e.g., size distribution, morphology, composition) of the cometary and interplanetary dust particles, as inferred from light scattering data analysis, are compared with those of the IDPS collected in the upper Earth atmosphere and of the unique samples returned by the Stardust mission at Wild 2. The results are discussed in terms of the formation of comets in the protosolar nebula, and of the possible survival, at the epoch of late early bombardment, of cometary organics embedded in fluffy aggregates.


2018 ◽  
Author(s):  
Katherine Burgess ◽  
◽  
David Bour ◽  
Rhonda M. Stroud ◽  
Anais Bardyn ◽  
...  

1985 ◽  
Vol 85 ◽  
pp. 365-368
Author(s):  
S. Ibadov

AbstractThe intensity of solar X-radiation scattered by a comet is calculated and compared to the proper X-radiation of the comet due to impacts of cometary and interplanetary dust particles. Detection of X-radiation of dusty comets at small heliocentric distances (R ≤ 1 a.u.) is found to be an indicator of high-temperature plasma generation as result of grain collisions.


Sign in / Sign up

Export Citation Format

Share Document