scholarly journals Interacting stellar winds in a binary system

1981 ◽  
Vol 59 ◽  
pp. 499-502
Author(s):  
Sun Kwok

It is now known that strong stellar winds develop in stars mostly at the red and blue sides of the HR diagram. However, although the mass loss rates observed in O and M stars are comparable, the corresponding wind velocities are vastly different. It would thus be of great interest to find a binary system, containing both a cool and a hot star each with its own wind, and observe the resultant interaction. For a long time, α Sco (M1.5 Iab + B2.5 V) was the only known example (Kudritzki and Reimers 1978, van der Hucht et al. 1980). The situation in this case is best illustrated by a VLA map made by Gibson (1979) who finds that a shock develops at the surface of interaction of the two winds. In this paper I shall describe another binary system in which two stellar winds are interacting with dramatic effects.

2020 ◽  
Vol 499 (2) ◽  
pp. 1531-1560
Author(s):  
Christer Sandin ◽  
Lars Mattsson

ABSTRACT Stellar winds of cool carbon stars enrich the interstellar medium with significant amounts of carbon and dust. We present a study of the influence of two-fluid flow on winds where we add descriptions of frequency-dependent radiative transfer (RT). Our radiation hydrodynamic models in addition include stellar pulsations, grain growth and ablation, gas-to-dust drift using one mean grain size, dust extinction based on both the small particle limit (SPL) and Mie scattering, and an accurate numerical scheme. We calculate models at high spatial resolution using 1024 gridpoints and solar metallicities at 319 frequencies, and we discern effects of drift by comparing drift models to non-drift models. Our results show differences of up to 1000 per cent in comparison to extant results. Mass-loss rates and wind velocities of drift models are typically, but not always, lower than in non-drift models. Differences are larger when Mie scattering is used instead of the SPL. Amongst other properties, the mass-loss rates of the gas and dust, dust-to-gas density ratio, and wind velocity show an exponential dependence on the dust-to-gas speed ratio. Yields of dust in the least massive winds increase by a factor 4 when drift is used. We find drift velocities in the range $10\!-\!67\, \mbox{km}\, \mbox{s}^{-1}$, which is drastically higher than in our earlier works that use grey RT. It is necessary to include an estimate of drift velocities to reproduce high yields of dust and low wind velocities.


2007 ◽  
Vol 3 (S250) ◽  
pp. 89-96
Author(s):  
D. John Hillier

AbstractThe standard theory of radiation driven winds has provided a useful framework to understand stellar winds arising from massive stars (O stars, Wolf-Rayet stars, and luminous blue variables). However, with new diagnostics, and advances in spectral modeling, deficiencies in our understanding of stellar winds have been thrust to the forefront of our research efforts. Spectroscopic observations and analyses have shown the importance of inhomogeneities in stellar winds, and revealed that there are fundamental discrepancies between predicted and theoretical mass-loss rates. For late O stars, spectroscopic analyses derive mass-loss rates significantly lower than predicted. For all O stars, observed X-ray fluxes are difficult to reproduce using standard shock theory, while observed X-ray profiles indicate lower mass-loss rates, the potential importance of porosity effects, and an origin surprisingly close to the stellar photosphere. In O stars with weak winds, X-rays play a crucial role in determining the ionization balance, and must be taken into account.


2014 ◽  
Vol 1 ◽  
pp. 39-41 ◽  
Author(s):  
J. S. Vink

Abstract. We discuss the origin and quantification of wind clumping and mass–loss rates (Ṁ), particularly in close proximity to the Eddington (Γ) limit, relevant for very massive stars (VMS). We present evidence that clumping may not be the result of the line-deshadowing instability (LDI), but that clumps are already present in the stellar photosphere.


1982 ◽  
Vol 98 ◽  
pp. 377-385 ◽  
Author(s):  
Theodore P. Snow

Resonance-line profiles of SiIII and SiIV lines in 22 B and Be stars have been analyzed in the derivation of mass-loss rates. Of the 19 known Be or shell stars in the sample group, all but one show evidence of winds. It is argued that for stars of spectral type B1.5 and later, SiIII and SiIV are the dominant stages of ionization, and this conclusion, together with theoretical fits to the line profiles, leads to mass-loss rates between 10-11 and 3 × 10-9 for the stars. The rate of mass loss does not correlate simply with stellar parameters, and probably is variable with time. The narrow FeIII shell lines often seen in the ultraviolet spectra of Be stars may arise at low levels in the wind, below the strong acceleration zone. The mass-loss rates from Be stars are apparently insufficient to affect stellar evolution.


2020 ◽  
Vol 496 (2) ◽  
pp. 1325-1342 ◽  
Author(s):  
Ioana Boian ◽  
Jose H Groh

ABSTRACT We compute an extensive set of early-time spectra of supernovae interacting with circumstellar material using the radiative transfer code cmfgen. Our models are applicable to events observed from 1 to a few days after explosion. Using these models, we constrain the progenitor and explosion properties of a sample of 17 observed interacting supernovae at early times. Because massive stars have strong mass-loss, these spectra provide valuable information about supernova progenitors, such as mass-loss rates, wind velocities, and surface abundances. We show that these events span a wide range of explosion and progenitor properties, exhibiting supernova luminosities in the 108 to 1012 L⊙ range, temperatures from 10 000 to 60 000 K, progenitor mass-loss rates from a few 10−4 up to 1 M⊙ yr−1, wind velocities from 100 to 800 km s−1, and surface abundances from solar-like to H-depleted. Our results suggest that many progenitors of supernovae interacting with circumstellar material have significantly increased mass-loss before explosion compared to what massive stars show during the rest of their lifetimes. We also infer a lack of correlation between surface abundances and mass-loss rates. This may point to the pre-explosion mass-loss mechanism being independent of stellar mass. We find that the majority of these events have CNO-processed surface abundances. In the single star scenario this points to a preference towards high-mass RSGs as progenitors of interacting SNe, while binary evolution could impact this conclusion. Our models are publicly available and readily applicable to analyse results from ongoing and future large-scale surveys such as the Zwicky Transient Factory.


1999 ◽  
Vol 193 ◽  
pp. 218-226
Author(s):  
Georges Meynet

Stellar winds contribute together with supernovae explosions to the chemical enrichment of the interstellar medium. We recall how the metallicity dependence of the stellar winds implies a metallicity dependence of the stellar yields. We show that an increase of the initial angular velocity has different effects than an increase of the mass loss rates. Wolf-Rayet stars appear as important sources of 19F and 26Al. They are the favoured candidates for the 22Ne anomaly observed in the Galactic cosmic ray sources. They may also have injected into the proto-solar nebula short-lived radionuclides as 26Al, 36Cl, 41Ca, 107Pd and 205Pb.


2018 ◽  
Vol 614 ◽  
pp. A91 ◽  
Author(s):  
M. Haucke ◽  
L. S. Cidale ◽  
R. O. J. Venero ◽  
M. Curé ◽  
M. Kraus ◽  
...  

Context. Variable B supergiants (BSGs) constitute a heterogeneous group of stars with complex photometric and spectroscopic behaviours. They exhibit mass-loss variations and experience different types of oscillation modes, and there is growing evidence that variable stellar winds and photospheric pulsations are closely related. Aims. To discuss the wind properties and variability of evolved B-type stars, we derive new stellar and wind parameters for a sample of 19 Galactic BSGs by fitting theoretical line profiles of H, He, and Si to the observed ones and compare them with previous determinations. Methods. The synthetic line profiles are computed with the non-local thermodynamic equilibrium (NLTE) atmosphere code FASTWIND, with a β-law for hydrodynamics. Results. The mass-loss rate of three stars has been obtained for the first time. The global properties of stellar winds of mid/late B supergiants are well represented by a β-law with β > 2. All stars follow the known empirical wind momentum–luminosity relationships, and the late BSGs show the trend of the mid BSGs. HD 75149 and HD 99953 display significant changes in the shape and intensity of the Hα line (from a pure absorption to a P Cygni profile, and vice versa). These stars have mass-loss variations of almost a factor of 2.8. A comparison among mass-loss rates from the literature reveals discrepancies of a factor of 1 to 7. This large variation is a consequence of the uncertainties in the determination of the stellar radius. Therefore, for a reliable comparison of these values we used the invariant parameter Qr. Based on this parameter, we find an empirical relationship that associates the amplitude of mass-loss variations with photometric/spectroscopic variability on timescales of tens of days. We find that stars located on the cool side of the bi-stability jump show a decrease in the ratio V∞∕Vesc, while their corresponding mass-loss rates are similar to or lower than the values found for stars on the hot side. Particularly, for those variable stars a decrease in V∞∕Vesc is accompanied by a decrease in Ṁ. Conclusions. Our results also suggest that radial pulsation modes with periods longer than 6 days might be responsible for the wind variability in the mid/late-type. These radial modes might be identified with strange modes, which are known to facilitate (enhanced) mass loss. On the other hand, we propose that the wind behaviour of stars on the cool side of the bi-stability jump could fit with predictions of the δ−slow hydrodynamics solution for radiation-driven winds with highly variable ionization.


1994 ◽  
Vol 162 ◽  
pp. 487-489 ◽  
Author(s):  
Michihiro R. Shimada ◽  
Masaki Ito ◽  
Ryuko Hirata ◽  
Toshihiro Horaguchi

We newly calculated the line radiative force with 520,000 atomic lines, which is twice as many as those of Abbott (1982), for OB supergiants. Our results are as follows. (1) The mass loss rates for O stars with Teff = 50,000K are seven times as large as Abbott's (1982) because of contribution from Fe iv lines. (2) Contribution from many weak lines increases the mass loss rates and decreases the wind velocities of OB stars within a temperature range of 10,000K ≤ Teff ≤ 30,000K. This result is qualitatively in accordance with the results from the recent observations of O stars. (3) The mass loss rates of OB stars depend on metallicity with Ṁ ∼ Z.


1981 ◽  
Vol 251 ◽  
pp. 139 ◽  
Author(s):  
T. P., Jr. Snow
Keyword(s):  
Be Stars ◽  

Sign in / Sign up

Export Citation Format

Share Document