The Effect of CNO Metal Abundances on the Soft X-Ray Emission from He Rich White Dwarfs

1989 ◽  
Vol 114 ◽  
pp. 202-205
Author(s):  
M.A. Barstow

AbstractPredicted soft X-ray fluxes for model atmospheres containing varying concentrations of CNO metals are compared with those observed by EXOSAT for the planetary nebula nucleus K1-16. An effective temperature in the range ≈ 125000 − 180000K is determined for K1-16 and a limit on the concentration of CNO in the atmosphere (between 0.02 and 20 ×solar relative to He) obtained. Some comments on the application of the models to the apparently metal rich star H1504+65 are included.

1989 ◽  
Vol 114 ◽  
pp. 198-201
Author(s):  
Frits Paerels ◽  
John Heise

AbstractWe present the observations of the photospheric X-ray spectra of hot DA white dwarfs, obtained with the 500 lines mm−1 Transmission Grating Spectrometer on EXOSAT. These spectra cover the full soft X-ray band, at high wavelength resolution and statistical quality. They allow us to do an accurate measurement of the photospheric parameters, particularly of effective temperature and chemical composition of the atmosphere.We consider the case of HZ 43 in some detail. Model atmospheric spectra that satisfy all measured absolute optical, UV and X-ray fluxes turn out not to fit the shape of the measured X-ray spectrum. However, from a comparison of model spectra calculated with different model atmospheres codes we infer the existence of a 15% systematic uncertainty in the model fluxes at the shortest wavelengths (λ < 100 Å) in current model calculations. This can explain the fitting problem. Since the systematic uncertainty in the models is larger than the statistical uncertainty in the shape of the measured X-ray spectrum of HZ 43, we cannot at present use this measured shape to derive the effective temperature and gravity. We revert to broad band photometry, using the measured integrated soft X-ray flux and the optical flux, to determine Te = 45,000 – 54,000K, R/R⊙ = 0.0140 – 0.0165. From the absence of the He II Ly edge at 227 Å in the measured spectrum, we set a upper limit on the photospheric helium abundance of He/H = 1.0 × 10−5; this upper limit is independent of the uncertainties in the model calculations mentioned above.


1971 ◽  
Vol 42 ◽  
pp. 125-129
Author(s):  
I. Bues

The determination of atmospheric parameters for non-DA white dwarfs is investigated with the computed helium-rich model atmospheres by Bues (1970). Only poor predictions are possible from UBV colors alone for DB and DC stars. From uvby colors a determination of effective temperature is possible within 1000 K. Profiles of lines in different parts of the spectrum are necessary for better results.A deficiency of metal abundances for the cooler non-DA stars is obtained.


1989 ◽  
Vol 114 ◽  
pp. 368-372 ◽  
Author(s):  
S. Vennes ◽  
G. Fontaine ◽  
F. Wesemael

Observations of hot DA white dwarfs in the EUV/soft X-ray range have revealed that, in a majority of cases, the detected flux is less than that expected from pure hydrogen atmospheres. This implies an extra opacity source which must be due to the presence of small traces of heavier elements. These elements are generally not spectroscopically detected in hot DA white dwarfs, but the large sensitivity of the EUV/soft X-ray broad-band flux to the presence of extra absorbers can be used with profit to Infer their abundances. For simplicity, it has been assumed that only helium provides the required opacity source in the majority of the analyses carried out so far. In this context, Vennes et al. (1988a) have recently reviewed in details the mechanisms that could be responsible for the presence of small traces of helium in the atmospheres of hot DA white dwarfs. They favor a model in which these stars are interpreted as stratified objects with an outer layer of hydrogen which is sufficiently thick that radiation in the visible escapes only from H-rich regions, and yet sufficiently thin that the EUV/soft X-ray radiation escapes from deeper layers, polluted by the tail of the helium distribution which extends upwards. This model accounts naturally for the positive correlation observed between the inferred helium abundance and the effective temperature in hot DA stars studied at short wavelengths. If the model is correct, hot DA white dwarfs as a class must have very thin outer hydrogen layers with estimated masses in the range–13 > log q(H) = log (M(H)/M) > –15.


1997 ◽  
Vol 482 (2) ◽  
pp. 891-896 ◽  
Author(s):  
You‐Hua Chu ◽  
Thomas H. Chang ◽  
Gail M. Conway

1998 ◽  
Vol 11 (1) ◽  
pp. 363-363
Author(s):  
Johanna Jurcsik ◽  
Benjamin Montesinos

FG Sagittae is one of the most important key objects of post-AGB stellar evolutionary studies. As a consequence of a final helium shell flash, this unique variable has shown real evolutionary changes on human time scales during this century. The observational history was reviewed in comparison with predictions from evolutionary models. The central star of the old planetary nebula (Hel-5) evolved from left to right in the HR diagram, going in just hundred years from the hot region of exciting sources of planetary nebulae to the cool red supergiant domain just before our eyes becoming a newly-born post-AGB star. The effective temperature of the star was around 50,000 K at the beginning of this century, and the last estimates in the late 1980s give 5,000-6,500 K. Recent spectroscopic observations obtained by Ingemar Lundström show definite changes in the nebular line intensities. This fact undoubtedly rules out the possibility that, instead of FG Sge, a hidden hot object would be the true central star of the nebula. Consequently, the observed evolutionary changes are connected with the evolution of a single star.


2003 ◽  
Vol 599 (2) ◽  
pp. L87-L90 ◽  
Author(s):  
Raghvendra Sahai ◽  
Joel H. Kastner ◽  
Adam Frank ◽  
Mark Morris ◽  
Eric G. Blackman
Keyword(s):  

2001 ◽  
Vol 549 (1) ◽  
pp. 509-515 ◽  
Author(s):  
Kristen Menou ◽  
Rosalba Perna ◽  
John C. Raymond
Keyword(s):  

Author(s):  
Elena Cukanovaite ◽  
Pier-Emmanuel Tremblay ◽  
Pierre Bergeron ◽  
Bernd Freytag ◽  
Hans-Günter Ludwig ◽  
...  

Abstract In this paper, we present corrections to the spectroscopic parameters of DB and DBA white dwarfs with −10.0 ≤ log (H/He) ≤−2.0, 7.5 ≤ log g ≤9.0 and 12 000 K ≲ Teff ≲ 34 000 K, based on 282 3D atmospheric models calculated with the CO5BOLD radiation-hydrodynamics code. These corrections arise due to a better physical treatment of convective energy transport in 3D models when compared to the previously available 1D model atmospheres. By applying the corrections to an existing SDSS sample of DB and DBA white dwarfs, we find significant corrections both for effective temperature and surface gravity. The 3D log g corrections are most significant for Teff ≲ 18, 000 K, reaching up to −0.20 dex at log g = 8.0. However, in this low effective temperature range, the surface gravity determined from the spectroscopic technique, can also be significantly affected by the treatment of the neutral van der Waals line broadening of helium and by non-ideal effects due to the perturbation of helium by neutral atoms. Thus, by removing uncertainties due to 1D convection, our work showcases the need for improved description of microphysics for DB and DBA model atmospheres. Overall, we find that our 3D spectroscopic parameters for the SDSS sample are generally in agreement with Gaia DR2 absolute fluxes within 1-3σ for individual white dwarfs. By comparing our results to DA white dwarfs, we determine that the precision and accuracy of DB/DBA atmospheric models are similar. For ease of user application of the correction functions, we provide an example Python code.


2018 ◽  
Vol 616 ◽  
pp. A82 ◽  
Author(s):  
B. Proxauf ◽  
R. da Silva ◽  
V. V. Kovtyukh ◽  
G. Bono ◽  
L. Inno ◽  
...  

We gathered more than 1130 high-resolution optical spectra for more than 250 Galactic classical Cepheids. The spectra were collected with the optical spectrographs UVES at VLT, HARPS at 3.6 m, FEROS at 2.2 m MPG/ESO, and STELLA. To improve the effective temperature estimates, we present more than 150 new line depth ratio (LDR) calibrations that together with similar calibrations already available in the literature allowed us to cover a broad range in wavelength (5348 ≤ λ ≤ 8427 Å) and in effective temperature (3500 ≤ Teff ≤ 7700 K). This gives us the unique opportunity to cover both the hottest and coolest phases along the Cepheid pulsation cycle and to limit the intrinsic error on individual measurements at the level of ~100 K. As a consequence of the high signal-to-noise ratio of individual spectra, we identified and measured hundreds of neutral and ionized lines of heavy elements, and in turn, have the opportunity to trace the variation of both surface gravity and microturbulent velocity along the pulsation cycle. The accuracy of the physical parameters and the number of Fe I (more than one hundred) and Fe II (more than ten) lines measured allowed us to estimate mean iron abundances with a precision better than 0.1 dex. We focus on 14 calibrating Cepheids for which the current spectra cover either the entire or a significant portion of the pulsation cycle. The current estimates of the variation of the physical parameters along the pulsation cycle and of the iron abundances agree very well with similar estimates available in the literature. Independent homogeneous estimates of both physical parameters and metal abundances based on different approaches that can constrain possible systematics are highly encouraged.


Sign in / Sign up

Export Citation Format

Share Document