scholarly journals X-Ray Binaries in Early Type Galaxies and the Globular Cluster Connection

2004 ◽  
Vol 194 ◽  
pp. 73-74
Author(s):  
T. J. Maccarone ◽  
A Kundu ◽  
S. E. Zepf ◽  
T. H. Puzia

AbstractWe summarize the key observations made in recent observations of X-ray sources in early-type galaxies. Typically about half of the X-ray binaries in early-type galaxies are in globular clusters, they are preferentially found in metal rich globular clusters, and there is no indication that cluster-age is an important parameter. Theoretical challenges are presented by these results.

2019 ◽  
Vol 14 (S351) ◽  
pp. 367-376
Author(s):  
Maureen van den Berg

AbstractThe features and make up of the population of X-ray sources in Galactic star clusters reflect the properties of the underlying stellar environment. Cluster age, mass, stellar encounter rate, binary frequency, metallicity, and maybe other properties as well, determine to what extent we can expect a contribution to the cluster X-ray emission from low-mass X-ray binaries, millisecond pulsars, cataclysmic variables, and magnetically active binaries. Sensitive X-ray observations withXMM-Newton and certainlyChandra have yielded new insights into the nature of individual sources and the effects of dynamical encounters. They have also provided a new perspective on the collective X-ray properties of clusters, in which the X-ray emissivities of globular clusters and old open clusters can be compared to each other and to those of other environments. I will review our current understanding of cluster X-ray sources, focusing on star clusters older than about 1 Gyr, illustrated with recent results.


1987 ◽  
Vol 125 ◽  
pp. 187-197 ◽  
Author(s):  
Frank Verbunt ◽  
Piet Hut

We discuss formation mechanisms for low-mass X-ray binaries in globular clusters. We apply the most efficient mechanism, tidal capture in close two-body encounters between neutron and main-sequence stars, to the clusters of our galaxy. The observed number of X-ray sources in these can be explained if the birth velocities of neutron stars are higher than estimated from velocity measurements of radiopulsars, or if the initial mass function steepens at high masses. We perform a statistical test on the distribution of X-ray sources with respect to the number of close encounters in globular clusters, and find satisfactory agreement between the tidal capture theory and observation, apart from the presence of low-mass X-ray binaries in four clusters with a very low encounter rate: Ter 1, Ter 2, Gr 1 and NGC 6712.EXOSAT observations indicate that some dim globular cluster sources may be less luminous than hitherto assumed, and support the view that the brighter dim sources may be soft X-ray transients in quiescence.


1988 ◽  
Vol 126 ◽  
pp. 347-366
Author(s):  
Jonathan E. Grindlay

X-ray binaries in globular clusters provide a powerful tool for the exploration of the evolution of compact binaries and their host globular clusters. Recent x-ray and optical studies of these systems have yielded long-sought binary periods and fundamental properties for two sources (in NGC 6624 and M 15). It appears that tidal capture formation of compact binaries in globular clusters can proceed by several different routes and lead to exotic systems such as the white dwarf-neutron star binary with an 11-minute period recently discovered in NGC 6624. Combined with previously reported long-term periods for several globular cluster (and field) x-ray sources, this suggests again that many of these systems may in fact be hierarchical triple systems. The prospects for forming these in the dense cores of clusters undergoing core collapse is discussed, and searches for color gradients in the cores of globular clusters showing cusps in their central surface brightness distribution are presented. A program to test for the high central density of binaries (and triples) expected in cusp clusters by searching for diffuse line emission from their constituent cataclysmic variables is briefly described. Finally, the case for globular cluster disruption and the formation of galactic x-ray burst source is reviewed in light of recent developments.


2008 ◽  
Vol 689 (2) ◽  
pp. 983-1004 ◽  
Author(s):  
Philip J. Humphrey ◽  
David A. Buote

2003 ◽  
Vol 595 (2) ◽  
pp. 743-759 ◽  
Author(s):  
Craig L. Sarazin ◽  
Arunav Kundu ◽  
Jimmy A. Irwin ◽  
Gregory R. Sivakoff ◽  
Elizabeth L. Blanton ◽  
...  

2020 ◽  
Vol 492 (4) ◽  
pp. 5684-5708 ◽  
Author(s):  
C O Heinke ◽  
M G Ivanov ◽  
E W Koch ◽  
R Andrews ◽  
L Chomiuk ◽  
...  

ABSTRACT The dynamical production of low-mass X-ray binaries and brighter cataclysmic variables (CVs) in dense globular clusters is well-established. We investigate how the X-ray emissivity of fainter X-ray binaries (principally CVs and coronally active binaries) varies between different environments. We compile calculations (largely from the literature) of the X-ray emissivity of old stellar populations, including open and globular clusters and several galaxies. We investigate three literature claims of unusual X-ray sources in low-density stellar populations. We show that a suggested quiescent neutron star in the open cluster NGC 6819 is a foreground M dwarf. We show that the suggested diffuse X-ray emission from an old nova shell in the globular cluster NGC 6366 is actually a background galaxy cluster. And we show that a suggested population of quiescent X-ray binaries in the Sculptor Dwarf Galaxy is mostly (perhaps entirely) background galaxies. We find that above densities of 104 M⊙ pc−3, the X-ray emissivity of globular clusters increases, due to dynamical production of X-ray emitting systems. Below this density, globular clusters have lower X-ray emissivity than the other populations, and we do not see a strong dependence of X-ray emissivity due to density effects. We find significant correlations between X-ray emissivity and binary fraction, metallicity, and density. Sampling these fits via bootstrap techniques gives less significant correlations, but confirms the effect of metallicity on low-density populations, and that of density on the full globular cluster sample.


Sign in / Sign up

Export Citation Format

Share Document