scholarly journals Nonideality effects on temperature relaxation

2002 ◽  
Vol 20 (4) ◽  
pp. 543-545 ◽  
Author(s):  
D.O. GERICKE ◽  
M.S. MURILLO ◽  
M. SCHLANGES

The relaxation of two-temperature electron–ion systems is investigated. We apply a quantum kinetic approach which is suitable to treat strong electron–ion coupling and avoids any ad hoc cut-off procedures. A comparison with the usual Landau–Spitzer formula gives good agreement for Coulomb logarithms larger than three, whereas larger relaxation rates were found for strongly coupled plasmas. It is shown that the Landau–Spitzer theory can be greatly improved considering hyperbolic orbits. Numerical results for the energy transfer rates and the temporal behavior of the electron temperature are shown.

2021 ◽  
Author(s):  
Robert Sprenkle ◽  
Luciano Silvestri ◽  
M. S. Murillo ◽  
Scott Bergeson

Abstract New facilities such as the National Ignition Facility and the Linac Coherent Light Source have pushed the frontiers of high energy-density matter. These facilities offer unprecedented opportunities for exploring extreme states of matter, ranging from cryogenic solid-state systems to hot, dense plasmas, with applications to inertial-confinement fusion and astrophysics. However, significant gaps in our understanding of material properties in these rapidly evolving systems still persist. In particular, non-equilibrium transport properties of strongly-coupled Coulomb systems remain an open question. Here, we study ion-ion temperature relaxation in a binary mixture, exploiting a recently-developed dual-species ultracold neutral plasma. We compare measured relaxation rates with atomistic simulations and a range of popular theories. Our work validates the assumptions and capabilities of the simulations and invalidates theoretical models in this regime. This work illustrates an approach for precision determinations of detailed material properties in Coulomb mixtures across a wide range of conditions.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
R. Tucker Sprenkle ◽  
L. G. Silvestri ◽  
M. S. Murillo ◽  
S. D. Bergeson

AbstractNew facilities such as the National Ignition Facility and the Linac Coherent Light Source have pushed the frontiers of high energy-density matter. These facilities offer unprecedented opportunities for exploring extreme states of matter, ranging from cryogenic solid-state systems to hot, dense plasmas, with applications to inertial-confinement fusion and astrophysics. However, significant gaps in our understanding of material properties in these rapidly evolving systems still persist. In particular, non-equilibrium transport properties of strongly-coupled Coulomb systems remain an open question. Here, we study ion-ion temperature relaxation in a binary mixture, exploiting a recently-developed dual-species ultracold neutral plasma. We compare measured relaxation rates with atomistic simulations and a range of popular theories. Our work validates the assumptions and capabilities of the simulations and invalidates theoretical models in this regime. This work illustrates an approach for precision determinations of detailed material properties in Coulomb mixtures across a wide range of conditions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
D. Maryenko ◽  
M. Kawamura ◽  
A. Ernst ◽  
V. K. Dugaev ◽  
E. Ya. Sherman ◽  
...  

AbstractSpin–orbit coupling (SOC) is pivotal for various fundamental spin-dependent phenomena in solids and their technological applications. In semiconductors, these phenomena have been so far studied in relatively weak electron–electron interaction regimes, where the single electron picture holds. However, SOC can profoundly compete against Coulomb interaction, which could lead to the emergence of unconventional electronic phases. Since SOC depends on the electric field in the crystal including contributions of itinerant electrons, electron–electron interactions can modify this coupling. Here we demonstrate the emergence of the SOC effect in a high-mobility two-dimensional electron system in a simple band structure MgZnO/ZnO semiconductor. This electron system also features strong electron–electron interaction effects. By changing the carrier density with Mg-content, we tune the SOC strength and achieve its interplay with electron–electron interaction. These systems pave a way to emergent spintronic phenomena in strong electron correlation regimes and to the formation of quasiparticles with the electron spin strongly coupled to the density.


2014 ◽  
Vol 2014 (11) ◽  
Author(s):  
Davide Forcella ◽  
Andrea Mezzalira ◽  
Daniele Musso

Sign in / Sign up

Export Citation Format

Share Document