scholarly journals Stopping power of dense helium plasma for fast heavy ions

2003 ◽  
Vol 21 (1) ◽  
pp. 7-11 ◽  
Author(s):  
J. HASEGAWA ◽  
N. YOKOYA ◽  
Y. KOBAYASHI ◽  
M. YOSHIDA ◽  
M. KOJIMA ◽  
...  

The interaction process between fast heavy ions and dense plasma was experimentally investigated. We injected 4.3-MeV/u or 6.0-MeV/u iron ions into a z-pinch-discharge helium plasma and measured the energy loss of the ions by the time of flight method. The energy loss of 4.3-MeV/u ions fairly agreed with theoretical prediction when the electron density of the target was on the order of 1018 cm−3. With increasing electron density beyond 1019 cm−3, the difference between the experiment and the theory became remarkable; the experimental energy loss was 15% larger than the theoretical value at the peak density. For 6.0-MeV/u ions, the deviation from the theory appeared even at densities below 1019 cm−3. These discrepancies indicated that density effects such as ladderlike ionization caused the enhancement of the projectile mean charge in the target.

2000 ◽  
Vol 18 (4) ◽  
pp. 647-653 ◽  
Author(s):  
M. OGAWA ◽  
U. NEUNER ◽  
H. KOBAYASHI ◽  
Y. NAKAJIMA ◽  
K. NISHIGORI ◽  
...  

An energy loss of 240 MeV argon ions in a Z-pinch helium plasma has been for the first time observed throughout the entire pinching process. Standard Stark broadening analysis gives an electron density ranging from 4 to 6 × 1017 cm−3 during the pinch. To deduce stopping power from the energy loss, the target thickness of the helium plasma has been evaluated assuming the mean charge of helium based on thermal equilibrium. The observed electron density and the mean charge of helium give a target thickness of 30 ± 3 μg cm−2 from 1 μs to 1.8 μs after the discharge ignition. The measured stopping power exceeds a tabulated value for cold helium gas by a factor of 2 to 3 around the time of the first pinch. The experimental stopping power is compared with theoretical values calculated using an equation of stopping power for a partially ionized plasma.


1991 ◽  
Vol 43 (4) ◽  
pp. 2015-2030 ◽  
Author(s):  
Thomas Peter ◽  
Jürgen Meyer-ter-Vehn

1996 ◽  
Vol 14 (4) ◽  
pp. 599-604 ◽  
Author(s):  
R. Kowalewicz ◽  
E. Boggasch ◽  
D.H.H. Hoffmann ◽  
J. Jacoby ◽  
W. Laux ◽  
...  

Experiments are presented that demonstrate the high stopping power of fully ionized hydrogen plasma for low-energy heavy ions. A plasma with electron densities up to 7.1016 cm–3 at temperatures above 1 eV was created by an electrical discharge. In the described experiment, a stopping power of 1.08 GeV/(mg/cm2) was measured using singly charged krypton ions at 45–keV/u energy. The measured stopping power exceeds the corresponding value in cold hydrogen gas by a factor of 35. These measurements confirm the theoretical stopping power predictions close to the expected maximum in a fully ionized plasma.


1996 ◽  
Vol 14 (4) ◽  
pp. 781-788 ◽  
Author(s):  
O. Boine-Frankenheim ◽  
C. Stöckl

Due to the high nonequilibrium charge states specific to heavy ions, the plasma regime with coupling parameters l/ND < 1 and Zp/ND > 1 (ND ∼ number of electrons in a Debye sphere, Zp mean charge state of the projectile) is of interest for the applications. In this regime the stopping power cannot be obtained by a linearization of the Vlasov-Poisson system, but forcing a fully nonlinear treatment. In the present paper the Vlasov-Poisson system is solved numerically by using the capability of the new generation of massively parallel supercomputers. The results are compared with the standard dielectric theory and a binary collision approach. Charge-state calculations are performed, accounting for all relevant features of the atomic processes and the spectra characteristic to heavy ions in dense plasma targets. The results show good agreement with experimental measurement for medium and heavy ions penetrating a Z-pinch device.


Author(s):  
David C. Joy ◽  
Suichu Luo ◽  
John R. Dunlap ◽  
Dick Williams ◽  
Siqi Cao

In Physics, Chemistry, Materials Science, Biology and Medicine, it is very important to have accurate information about the stopping power of various media for electrons, that is the average energy loss per unit pathlength due to inelastic Coulomb collisions with atomic electrons of the specimen along their trajectories. Techniques such as photoemission spectroscopy, Auger electron spectroscopy, and electron energy loss spectroscopy have been used in the measurements of electron-solid interaction. In this paper we present a comprehensive technique which combines experimental and theoretical work to determine the electron stopping power for various materials by electron energy loss spectroscopy (EELS ). As an example, we measured stopping power for Si, C, and their compound SiC. The method, results and discussion are described briefly as below.The stopping power calculation is based on the modified Bethe formula at low energy:where Neff and Ieff are the effective values of the mean ionization potential, and the number of electrons participating in the process respectively. Neff and Ieff can be obtained from the sum rule relations as we discussed before3 using the energy loss function Im(−1/ε).


1995 ◽  
Vol 46 (1) ◽  
pp. 39-52 ◽  
Author(s):  
S.K. Sharma ◽  
Shyam Kumar ◽  
J.S. Yadav ◽  
A.P. Sharma

Sign in / Sign up

Export Citation Format

Share Document